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 The conference Mathematical Modelling in Physics and Engineering – 
MMPE’16 is organized by Czestochowa Branch of Polish Mathematical Society 
jointly with the Institute of Mathematics of Czestochowa University  
of Technology.  

Mathematical modelling is at the core of contemporary research within a wide 
range of fields of science and its applications. The MMPE’16 focuses on various 
aspects of mathematical modelling and usage of computer methods in modern 
problems of physics and engineering. The goal of this conference is to bring 
together mathematicians and researchers from  physics and diverse disciplines  
of technical sciences. Apart from providing a forum for the presentation of new 
results, it creates a platform for exchange of ideas as well as for less formal 
discussions during the evening social events which are planned to make  
the conference experience more enjoyable. 

This year’s conference is organized for the 8th time. Every year the conference 
participants represent  a prominent  group of recognized  scientists as well as young 
researchers  and PhD students from domestic and foreign universities. This time we 
have invited speakers from Technical University of Košice, Slovakia, participants 
from Vasyl Stefanyk Precarpathian National University Ivano-Frankivsk, Ukraine 
as well as  from a number of  Polish  higher education institutions: AGH University 
of Science and Technology, Jan Długosz University in Częstochowa, Maritime 
University of Szczecin, Czestochowa University of Technology, Poznan University 
of Technology, Medical University of Silesia, Cardinal Stefan Wyszyński 
University in Warsaw, University of Lodz. 

 
 
 
       Organizers 
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MATHEMATICAL MODEL FOR SALICYLIC ACID RELEASE 
FROM OINTMENTS- COMPARISON OF EXPERIMENTAL DATA 

WITH MODEL PREDICTIONS 

Marek Błasik 1, Renata Dyja 2 

1Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

2Department of Applied Pharmacy and Drug Technology, Medical University of Silesia, 
 Sosnowiec, Poland 

1marek.blasik@im.pcz.pl, 2 rdyja@sum.edu.pl 

In this paper, we present a numerical and experimental results of release of 
salicylic acid suspended in ointment. The release of drug is possible by diffusion 
through a penetrant acceptor fluid in the ointment. The mathematical model 
describing this phenomenon was proposed by Higuchi [1] and is called moving 
boundary problem, because boundary of the domain where salicylic acid is 
undissolved  is not known and determined as part of the solution. These types of 
problems are derived from heat transfer [2] and are often called Stefan problems in 
connection with the work of Joseph Stefan, who investigated the melting of the 
polar ice cap [3]. The diffusion of the solute through the dissolved ointment phase 
is described by parabolic partial differential equation: 

 ,0),(0,),(),(
2

2








 ttsx

x
txCD

t
txC

 (1) 

supplemented with the boundary conditions 

 ,0,)),((,),0( *  tCttsCCtC s  (2) 

initial conditions 

 ,0)0(,)0,0(  sCC s  (3) 

and Stefan condition 
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0
),()()(
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s x
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dt

tdSCC
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The mathematical model of release of salicylic acid suspended in ointment 
assumes that  (i) diffusivity D of the salicylic acid in the ointment is constant; (ii) 
initial concentration of salicylic acid 0C  is greater than salicylic acid solubility

sC ; (iii) ointment is heterogeneous and non-swellable. Models presented in [1] 
and [4] assume that drug release is into a perfect sink, with zero drug concentration 
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i.e. 0, 0C( t)= . This condition is well approximated if the release medium is 
exchanged sufficiently rapidly to keep sink conditions, or if the volume of the 
release medium is so large that drug concentration in the medium is negligible. In 
our approach we assume that *C is a function of variable t depending on the 
amount of salicylic acid released.  

Solution of mathematical model (1) - (4) presented in Fig. 1. was obtained by 
using numerical scheme based on finite difference method described in details in 
the papers [5,6]. 

 
Fig. 1. Theoretical prediction (solid line) and independent experimental verification (circles) of 

the release of salicylic acid from eucerin ointment  

Keywords: moving boundaries problems, controlled release, partial differential equations 
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DIRECT METHODS IN FRACTIONAL VARIATIONAL 
CALCULUS 

Tomasz Błaszczyk 1, Jacek Leszczyński 2 
1Institute of Mathematics, Czestochowa University of Technology,  

 Czestochowa, Poland 
2 Department of Hydrogen Energy, AGH University of Science and Technology,  

Krakow, Poland 
1tomasz.blaszczyk@im.pcz.pl, 2 jale@agh.edu.pl 

The classical variational calculus is concerned with the problem of minimizing 
or maximizing functionals. The calculus of variations is used to create differential 
equations and indicate the existence of solutions. The Lagrangian and Hamiltonian 
formulation of dynamical systems represents one of the most important issues in 
physics. In this topic, functionals are dependent on derivatives of integer order. 

On the other hand, one can replace (in a functional) the integer order derivative 
by the fractional one (for example Caputo or Riemann-Liouville derivative). Such 
approach leads to fractioanal variational calculus. In this case the fractional 
Hamiltonian and Lagrangian mechanics are described in terms of derivatives of 
non-integer order [1, 2]. The fractional functionals can take the following forms  

     , ,
b

C
L a

a

I L x y x D y x dx    (1) 

or 

     , ,
b

C
R b

a

I L x y x D y x dx    (2) 

The minimization of functionals (1) and (2) leads to the fractional differential 
equations which are known in literature as the fractional Euler-Lagrange 
differential equations. Several analytical methods to obtain solutions of these types 
of equations have been proposed [1, 2, 3]. However, for most fractional differential 
equations (especially for Euler-Lagrange equations) we cannot provide methods to 
determine the exact solutions. Therefore it is necessary to use numerical methods 
(direct or indirect).  

In this work we analyse only the direct methods. We consider the following 
methods: 

(i) The Ritz method with basis functions in the form of the modified Jacobi 
polynomials [4] 
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xc x P P
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



 

 (3) 

where    ,
iP x   represent the Jacobi polynomials. 

(ii) The Ritz method with basis functions in the following form [5] 

    
0

N
i

N i
i

y x y x c x


   (4) 

We compare various types of errors generated by the presented methods 

     2
1

b

N
a

err y x y x dx   (5) 

 
 

    2 ,
max Nx a b

err y x y x


   (6) 

 
 

   
 3 ,

max N

x a b

y x y x
err

y x

 
   

 
 (7) 

and estimate the rates of convergence of these methods.  

Keywords: fractional variational calculus, direct methods, fractional derivatives 
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PARALLEL IMPLEMENTATION OF FACIAL RECOGNITION 
SYSTEM BASED ON 2DHMM 

Janusz Bobulski 
Institute of Computer and Information Science, 

 Czestochowa University of Technology,  
 Czestochowa, Poland 
januszb@icis.pcz.pl.pl 

The constantly growing amount of digital data more and more often requires 
applying increasingly efficient systems for processing them. Increase the 
performance of individual processors has reached its upper limit, therefore, the we 
need to build multiprocessor systems. To exploit the potential of such systems, it is 
necessary to use parallel computing, i.e. creating computer systems based on 
parallel programming. In practice, most often their used adjusts the parallelization 
of the data processes, or regulates the parallelization of the query tasks. The system 
of face recognition that require high computational power is one of potential 
application of the computations parallelization, especially for large database sizes. 

The aim of the research was to develop a parallel system of face recognition 
based on two-dimensional hidden Markov models (2DHMM). The procedure of 
the person’ identification used for feature extraction wavelet transform in this 
system. The feature vector obtained from this transformation is utilized for training 
and testing the system. In this method, for identification purposes, both 2D and 3D 
images of the face were exploited. The detailed description of this sequential 
method of the face recognition one may find in the article [2]. Because of long 
computation times in this method we decided to apply the parallel processing. The 
analysis of algorithms of the systems using 2DHMM allowed use the parallel  
processing. The study of learning mode of the system allowed for the application 
the parallelization of data processing and the parallelization of tasks. While in test 
mode it was possible to uses only the parallelization of tasks.  Whereas the 
parallelization of data processing implemented through the separation of data on 
the processors. One task was the processing (training or testing) of one face image. 
For research we used the face base UMB-DB [3]. The experiment carried on the 
processor Intel i5 3.3 GHz with 4 cores and 4 threads, and the results of the 
experiment are presented in table 1. 

The results show that compared to sequential calculations, the best results were 
obtained for parallelization of tasks. In the learning mode and the testing mode 
with the use of a 2D image, we got a low acceleration of calculations, because the 
source data was much less. However for 3D images, a 3.2 acceleration was get for 
the learning mode, and 2.7 for the testing mode. In case of using for the 
identification both of image, 2D as well as 3D, acceleration for training mode and 
test was respectively 3.3 and 2.8.  
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Table 1. Comparison of processing time 

Type of processing Type of  face 
image  

Time of 
learning [s] 

Time of 
testing [s] 

Sequential 2D 126 117 
Sequential 3D 1145 1090 
Sequential 2D+3D 1262 1282 
Parallel processing 2D 102 1632 
Parallel processing 3D 762 2117 
Parallel processing 2D+3D 1082 3776 
Parallel task 2D 122 98 
Parallel task 3D 359 401 
Parallel task 2D+3D 386 451 

 
The use of parallel data processing using parfor loop did not give a significant 

speed up calculations. This is due to the structure of training and testing algorithms  
of HMM, that they have in their structure the operations, that do not allow 
parallelization of the calculation process. 

In conclusion, when we are creating a biometric system, using a face image of 
individuals and it is based on 2DHMM, it is worth to use parallel processing with 
application parallelization of tasks. In such a system, each processor independently 
processes one object, i.e. one person. The result of applying a parallel structure 
system is a three-fold reduction in computation time. 

Keywords: parallelization, face recognition, 2D hidden Markov models, HMM, parallel 
task 
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APPLICATION OF DIFFERENCE EQUATIONS  
TO EIGENVALUES OF CERTAIN BAND MATRICES 

Jolanta Borowska, Lena Łacińska  

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

jolanta.borowska@im.pcz.pl, lena.lacinska@im.pcz.pl 

The subject of considerations are tridiagonal and 2-tridiagonal Toeplitz 
matrices, which are the special case of band matrices. We are show the explicit 
formulas for eigenvalues of the matrices under considerations. 

The tridiagonal Toeplitz matrix will be denoted by nA , whilst the 2-tridiagonal 
Toeplitz matrix by (2)

nA . So, the analyzed matrices have the forms 

 n

n n

a c
b a c

b a c

b a c
b a



 
 
 
 
   
 
 
 
  

A   

  

 (1) 

and 

 (2)

0
0 0

0 0

0 0
0

n

n n

a c
a c

b a c

c
b a

b a


 
 
 
 
   
 
 
 
  

A    

  

 (2) 

Let   be an eigenvalue and 1[ ,..., ] 0nv v Tv  be the corresponding 
eigenvector. Hence the eigenvalue problem for matrix (1) has the form 

 n A v v  (3) 
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From the above equation we have 

  n n A I v 0  (4) 

where nI  is identity matrix of an order n  and 0  is column matrix filled by zero. 
Eigenvector v  is assumed to be nonzero, then   is an eigenvalue of matrix nA  if 
and only if 

 det( ) 0n n A I  (5) 

It can be observed that matrix n nA I  has tridiagonal Toeplitz structure. Let us 
denote the determinant of matrix n nA I  by nW . Following [1], we can write the 
recurrence equation for nW   

   012   nnn bcWWaW  ,   1n  (6) 

with the initial conditions of the form 

  aW1 ,         bcaW  2
2   (7) 

Solution to equation (6) with initial conditions (7) depend on  2 4a bc    . 
Assuming 0  and bearing in mind [1], we have 

  111  


 nn
n qpW  (8) 

where  

 

 

 
2

4

2
4

2

2

bcaa
q

bcaa
p











 (9) 

Hence from (5) we have  

 011   nn qp  (10) 

After many transformations, [2], we conclude that in this case eigenvalues s , 
ns ,,1  of matrix nA  have the form 

 
1

cos2



n
sbcas


 , ns ,,1  (11) 
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Now, let us assume that 0 . Hence, c.f. [1]  

 
   22

22
22 







 


n

n
abcanbcW 

 (12) 

It can be proved, [2] that in this case condition (5) leads to the following formula 
on eigenvalues 

 nsas ,,1,   (13) 

Let us observe relation (13) can be obtained from (11) under assumption 0b  or 
0c . It means that all eigenvalues of tridiagonal matrix nA  can be expressed by 

the formula (11). 
The subsequent considerations will be concerned with the eigenvalues of  
2-tridiagonal matrix of the form (2). Bearing in mind the above considerations, we 
conclude that   is an eigenvalue of matrix (2) if and only if  

 0)det( )2(  nn IA   (14) 

Let us denote the determinant on the left hand side of equation (14) by  2
nW . The 

derivation of the formula on eigenvalues of matrix (2) is based on the relation 
between determinant  2

nW  and determinants of pertinent tridiagonal matrices. 
Taking into account [3] we have 
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where 
2
nW , 

2
1nW , 

2
1nW  are the determinants of tridiagonal matrices of the form 

analogical as matrix (1) of orders 
2
n , 

2
1n  and 

2
1n , respectively. 

It can be proved [2] that if matrix (2) has the even order n then its eigenvalues have 
the form  

 
2

2cos2



n

sbcas


 , 
2

,,1 ns   (16) 

On the other hand, when the matrix (2) has the odd order n then its eigenvalues can 
be represented by the formulas, c.f. [2] 
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and 
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The above two formulas represent n different eigenvalues of 2-tridiagonal matrix 
(2) of the odd order n.  
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Colon polypectomy is used to remove abnormal growths, called polyps, from 
the colon (the large intestine) in order to reduce the risk of the colon cancer 
development [1]. Polyps can be removed endoscopically (colonoscopy). One of the 
popular methods of examination is the electrosurgical polypectomy. In this 
procedure a polypectomy snare is passed over the polyp and tightened around the 
stalk of the polyp. Electric current is then passed for a short period of time (a few 
seconds) through the snare loop to cut off the polyp stalk from the colon wall while 
providing electrocautery at the same time in order to close the wound and stop 
bleeding. 

The considered polyp-colon domain (treated as the axially symmetrical object) 
is shown in Figure 1. The domain consists of the following subdomains: the colon 
tissue (1), the polyp-tissue (2) and the wire loop snare electrode (3).  

 

      
Fig. 1. The considered domain (longitudinal section) and the control volume mesh 
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The heating process of the colon and polyp tissues is described by the system of 
partial differential equations (energy equations called the Pennes equation with the 
Joule heating source term caused by an electric field [2]) with the adequate 
boundary-initial conditions. Based on the calculated temperature at a particular 
location in the tissue, the degree of the tissue damage can be predicted using the 
Henriques' damage integral (if its value belongs to the interval (1, 104)  then we 
deal with the 2nd degree burn; values greater than 104 corresponds to the 3th degree 
burn). 

Equations of the mathematical model were solved by using the Control Volume 
Method [3, 4] for the mesh presented in Fig. 1. In Fig. 2 the sample results are 
shown. The tissue damage depends strongly on the electrical pulse duration.  

     
Fig. 2. Distributions of the electrical potential field, the isotherms and the predicted  

values of the damage integral in the considered domain for time 3 s 

Keywords: mathematical bioheat transfer modelling, biological tissue heating, polypectomy, 
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The phenomena of fracture and failure of materials are ubiquitous but mostly 
undesirable. Under external load materials undergo a damage process that leads to 
complete failure if load increase is not stopped. In this work we study breakdown 
processes in axially loaded metallic nanopillar arrays. To analyse failure in such 
systems we adapt Fibre Bundle Model which is a fundamental statistical model for 
failure of heterogeneous materials [1-2]. 

The system under consideration consists of N  longitudinal nanopillars. Each 
nanopillar is characterised by its own strength-threshold i

th , Ni ,..,2,1  to an 
applied axial load. Pillar-strength-thresholds are quenched random variables drawn 
according to nanoscale Weibull statistics[3]:  
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where n  is the number of critical defects,  o  and   are two constants. By 

applying nanoscale Weibull statistics simply considering 1n , we assume nearly 
defect-free structures. 

Loading of the system is realised by two different but equivalent procedures, 
namely quasi-static and application of finite force. When the load carried by a 
pillar exceeds its strength-threshold the pillar crashes and its load is transferred to 
other intact pillars according to a given load sharing protocol. We assume 
clustering of the pillars in the sense of their close arrangement. This means that 
effective range of interaction is restricted to pillars belonging to the same group. 
For this reason load transfer rule is based on hierarchical load sharing protocol [4-
5]. At the lowest hierarchy level pillars form groups containing z  nearest 
neighbours. In the second level a group of the z  nearest groups from the lowest 
level is the neighbourhood of the order 2 etc. The load from the broken pillar is 
equally transferred to all intact pillars belonging to its neighbourhood of the lowest 
possible level. In our calculations number of hierarchy levels M  varies from 2 to 
6. z  is called a coordination number.  

One of the quantities most intensively studied in this work is the probability of 
breakdown of the system. Figure 1 shows probabilities of breakdown for six 
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different coordination numbers z . As can be seen breakdown probability as a 
function of initial load per pillar   can be nicely fitted (dashed lines in Figure 1) 
by the function: 

   






 





2
erfc

2
1P  (2) 

where   and   are coefficients obtained from simulation results. Another 
interesting property analysed in the work is strength of the set, i.e, the mean value 
of load at which nanopillar array fails. We have also investigated sizes of critical 
avalanches and avalanche distributions.  

Fig.1 Empirical breakdown probability bP  as a function of initial load per pillar   for 
different coordination numbers and 4M .  The dashed lines represent function (2) with 

parameters computed from simulations. 

Keywords: nanoscale, stress transfer, damage mechanics, probability and statistics, strength 

References 

[1] Pradhan S., Hansen A., Chakrabarti B.K., Failure Processes in Elastic Fiber Bundles, Rev. Mod. 
Phys. 2010, 82, 499-555. 

[2] Hansen A., Hemmer P. C., Pradhan S., The Fiber Bundle Model: Modeling Failure in Materials, 
Wiley 2015. 

[3] Pugno N. M., Ruoff R.S., Nanoscale Weibull statistics, J. Appl. Phys., 2006, 99, 024301-4. 
[4] Newman W. I., Gabrielov A. M., Failure of hierarchical distributions of fibre bundles. I, Int.  

J. Fract. 1991, 50(1), 1-14. 
[5] Mishnaevsky Jr. L., Hierarchical Composites: Analysis of damage evolution based on fibre 

bundle model, Compos. Sci. Technol. 2011,71, 450-460. 

 



Mathematical Modelling in Physics and Engineering 
 

23 
 

AUTOMATIC CODE GENERATION FOR FINITE ELEMENT 
SHAPE FUNCTIONS 

Andrzej Grosser, Grzegorz Michalski 
Institute of Computer and Information Sciences, Czestochowa University of Technology,  

 Czestochowa, Poland 
andrzej.grosser@icis.pcz.pl, grzegorz.michalski@icis.pcz.pl 

The finite elements define shape functions. Shape functions interpolates the 
solution between the nodal values at the mesh. Usually, these are linear functions 
or polynomials of low degree. Some problems, however, required the use of more 
complex functions, for example curvilinear, Hermitian [1]. 

Finite element  method libraries provide the basic shape function. In most cases 
also they allow to add own custom, adapted to the problem functions. Unfortunately, 
this is not always a simple task, is required to implement a number of methods, for 
example that return a value of the derivative of shape function at a certain point. An 
additional disadvantage is the wide range of different solutions, the most hand 
created  source code cannot be easily transferred between different libraries. 

Above mentioned problems can be resolved by creating a domain specification 
language. Domain specification languages are small languages tailored to a 
particular problem domain [2]. This way can be reduced the number of details. In 
the case of the shape functions the domain specification language provide their 
general description. On the basis of this description generators automatically create 
the code. It is also possible to create generators that create code for the different 
libraries. 

The article presents a simple external specification language. This language 
allows to generate the source code for the library TalyFEM [3]. It is a library of 
Finite Element Method and allows creation of scalable software engineering. It 
provides only the triangular and tetrahedral elements linear shape functions. 

 

 

Fig. 1. Source code generation from shape function description 

Figure 1 shows the process of generating the source code based on the supplied 
shape function. The interpreter reads the specification shape functions and creates 
internal data structures independent of the concrete syntax of domain specific 



Mathematical Modelling in Physics and Engineering 
 

24 
 

language. Then, on the basis of these data generator, with the help of  
a mathematical program Maxima (for example to determine the derivative of the 
shape function), is able to create the target source code.  

Keywords: finite element method, shape functions, automatic code generation 
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Presented numerical model developed by Warren and Bottingera is used to 
determine the size of the solidified area in case of growth of dendritic grain. In this 
model, the growth of microstructure is determined by the solution of the phase 
content equation: 
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and the equation defining the concentration of alloy [1,2,3]. In the equation above 
Mφ is defined as the solid/liquid interface mobility, ε is a parameter related to the 
interface width, η is the anisotropy factor, HA and HB denotes the free energy of 
both components, cor is the stochastic factor which models thermodynamic 
fluctuations near the dendrite tip. The concentration of alloy is determined based 
on the solution of the diffusion equation defined as: 

ப௖
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= ∇ ⋅ ܿ∇]௖ܦ +

௏೘
ோ
ܿ(1 − ,߶)஻ܪ)(ܿ ܶ) − ,߶)஺ܪ ܶ))∇߶]       																												(2) 

where: Dc is the diffusion coefficient, Vm is the specific volume, R is the gas 
constant. Due to the occurring derivatives of the second order and the mixed 
derivatives to determining these values the generalized finite difference method is 
used.  

Modern heterogeneous computing platforms have become powerful HPC 
solutions, which could be applied for a wide range of applications [4,5]. An 
example of this trend are hybrid platforms containing Intel Xeon Phi coprocessors. 
These solutions offer similar performance advantages to traditional platforms based 
on CPUs only. It should be noted that the main advantages of heterogeneous Intel 
CPU-MIC platforms is capability of running applications written in industry 
standard programming languages [6]. However, there is still an open issue how 
scientific applications can utilize efficiently the hybrid platforms containing Intel 
Xeon Phi coprocessors [7,8]. 



Mathematical Modelling in Physics and Engineering 
 

26 
 

In our previous work, we developed an approach for porting and optimizing a 
real-life scientific application for modelling alloy solidification on computing 
platforms with a single Intel Xeon Phi accelerator [7]. This paper outlines a method 
of porting and optimization solidification application to hybrid platforms equipped 
with Intel Xeon Phi coprocessors. The main computational core of studied 
application is responsible for parallel calculation for subsequent of time steps and 
writing partial results after the first and then after every 2000 time steps. The 
original version of application utilize two CPUs only and in this version 
computations are interleaved with data writing. Proposed approach allows us to 
take advantage of all resources of hybrid platforms containing two coprocessors 
and two CPUs. This paper present also a sequence of steps that are necessary for 
porting studied application to platforms with accelerators, assuming no significant 
modifications of the code. The main challenges associated with proposed approach 
include overlapping of data movements and writing partial results to the file with 
computation carried out by the CPU, but also utilize core/threads and vector 
processing units offered by the processors as well as the coprocessors. To employ 
all available resources of utilized platforms we use heterogenous programming 
model which is a combination of OpenMP parallel programming standard and 
offload programming model for Intel MIC architecture. Idea of adaptation studied 
application to hybrid platform with Intel MIC is shown in Figure 1. 

 

 
Figure 1. Idea of adaptation numerical model of solidification to hybrid CPU-MIC 

platforms 

In this study, we use two hybrid platforms equipped with CPUs and Intel Xeon 
Phi coprocessors [9]. The first platform contains two Haswell-EP based Intel Xeon 
E5-2699 v3 CPUs, 256GB of DDR4-2133 main memory and two top-of-the-line 
Intel Xeon Phi 7120P coprocessors. Each of CPUs includes 18 cores clocked at 2.3 
GHz, while single coprocessor contains 61 cores clocked at 1.238 GHz with 16 GB 
main memory. The second platform combines two Intel Xeon E5-2695 v2 CPUs 
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(Ivy Bridge-EP architecture), 128 GB of DDR3-1866 main memory and two Intel 
Xeon 7120P coprocessors. Each of processors contains 12 cores clocked at 2.4 
GHz. For double precision floating-point operations, the theoretical peak 
performances of these platforms are 3741.4 (2×662.4+2×1208.3) Gflop/s and 
2877.4 (2×230.4+2×1208.3) Gflop/s, respectively. 

 
This work was supported by the National Science Centre, Poland under grant  
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Lifestyles of contemporary humans are characterized by much time spent in the 
sitting position. According to the statistical data, the main cause of disability of 
people below 45 years of age is low back pain, with around 75% of the population 
affected by this problem. Therefore, the aim of the present study was to design the 
spine implant using the finite element method.  
One of the methods to evaluate quality of new structures used at the design stage is 
computer simulation of mechanical properties (strength). The simulation allows for 
the analysis of stress and strain using the model that represents spinal segments 
with an implant. The causes of the damage to the system of tissue and implant are 
complex and connected with a uniform distribution of stress fields and substantial 
concentration of stress. 

A number of factors should be taken into account in the design of an 
intervertebral implant. First and foremost, the implant should fit the intervertebral 
space. Another important requirement is that the implant should ensure mobility 
consistent with anatomical range of movements while improving the stability of the 
spinal segment. Other requirements concerning vertebral implant design include its 
life, strength adjusted to the expected load, reliability, easiness of implantation 
during surgical intervention and opportunities for replacement if the implant is 
worn. Mechanical analysis was conducted for the implant design in terms of the 
choice of the materials for its components. The complete intervertebral implant was 
composed of the bottom plate, upper plate and an intermediary disc between the 
plates. Fig. 1 presents the geometry and model of implant after discretization and 
with the load applied. The design of the implant modelled ensures obtaining the 
anterior and posterior inclination angles of ±10º, and right and left inclination 
angles of ±7º, whereas the angle for the rotational movement in the transverse 
plane was ±12º.   

Strength analysis of the implant in the coordinate system xi, i=1,2,3 was focused 
on determination of the field of displacements u, strain  and stress σ with the 
respective components ui, ij, σij, i,j=1,2,3 for specific boundary conditions. These 
conditions were defined for both displacements (e.g. implant support) and implant 
stress (load conditions).  
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Fig. 1. Implant design: a) exploded view, b) geometrical model, c) isometric view, d) load diagram  

In the process of deformation, tensor functions ui, ij, σij, i,j=1,2,3 were defined 
by the following relationships: 
- equilibrium equation: 
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- continuity equation:  
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Evaluation of the stress state is based on the reduced (effective) stress.       
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If the stress state σij is determined by the main stress, this condition adopts the 
following form: 

     2 2 2
1 2 1 3 2 3zred                  (4) 

During the strength analysis of the implant, the upper and bottom plates were 
adopted as made of biocompatible metallic materials whereas the disc between the 
plates was analyzed using the metallic material and various plastics. 
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In many applications, the assumption of unlimited trust to a central authority is 
difficult or simply impossible to satisfy. The electronic currency Bitcoin protocol is 
a new motivation for cryptography with no trusted party.  

In this paper we propose a secure and efficient voting scheme based on secret 
sharing, multi-party computation and the Chinese Remainder Theorem. We present 
fully decentralized protocols for voting as one of the basic computational 
mechanisms in secure concurrent infrastructure with no trusted party. We adopt the 
honest-but-curious framework of multiparty computations, executed collectively in 
a fully decentralized environment of cooperating participants / servers. The 
discussed protocols form the beginning of our research on applications in the field 
of multilateral voting problems. Fully distributed or fully decentralized means: 
with no trusted party whatsoever and with all the parameters shared as a secret. The 
main idea is that all the input integer parameters are never revealed. Instead, they 
are shared by participants using an appropriate secret sharing. We are going to use 
the elementary additive secret sharing but also secret sharing based on Shamir 
secret sharing and the BGW method. The correctness proofs and  analysis of 
complexity are provided in this paper. Furthermore we present how we will 
develop this paper. 

The paper contains the original project of voting.  

Keywords: multi-party computations, secret sharing, modular arithmetic, voting, e-voting, 
computational complexity, cryptography 
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Modelling object movement in the water is very complicated issue. It requires 
the influence of the sea current field, the wind field, and the wave field on the 
moving object in the water. The effect of these parameters on the object movement 
is dependent on the degree of its emersion in the water, the type of the object and 
the type of the water basin, in which the object is located. ([1],[2]) 

In this paper, the method for modelling the surface current’s influence on 
small objects moving in the port basins will be presented. It is assumed that 
considered objects are immersed in the water with the exception of at most the part 
not larger than the human head. As a consequence, the movement of these objects 
is caused by the surface currents. The influence of the wind field and the wave field 
is then neglected. The interactions between the surface currents and these objects 
will be determined by the weighted directed graph [3]. The edge weights of the 
graph will be defined on the basis on surface current directions generated by the 
hydrodynamic models. Moreover, the object movement time will be determined 
based on the surface current speeds. 

Thus, the method for modelling surface current influence on small objects 
immersed in the port basins allows to implement an application supporting the 
rescue action planning in these basins. Such an application can be used for locating 
these objects, i.e., survivors, measuring buoys. This approach enables to estimate 
the route of these objects. 

Keywords: graph theory, sea rescue 

References 

[1] Iamsar Manual, International Aeronautical and Maritime Search and Rescue Manual, Mission 
Co-ordination, International Maritime Organization, 2013, 2. 

[2] Pyrcha J., Application of the Fuzzy Set Theory to the Representation of the Visual Information in 
Support of the Localization of Objects on the Sea Surface, AGH University of Science and 
Technology Press, Cracow 2008, 184, 93 – 97. 

[3] Diestel R., Graph theory, Springer-Verlag New York, Inc, Electronic Edition 2000, GTM 173.  

 



Mathematical Modelling in Physics and Engineering 
 

33 
 

THE INTEGRAL REPRESENTATION OF FELLER SEMIGROUP 
ASSOCIATED WITH DIFFUSION PROCESS ON A LINE WITH 

MOVABLE MEMBRANE 
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We consider the problem of construction of the two-parameter semigroup of 
operators Tst, 0≤s<t≤T, associated with inhomogeneous Feller process on a line 
such that in domains (-∞, r(s)) and (r(s), ∞), where r(s) is given function, it 
coincides with diffusion processes given there by their generating differential 
operators, and its behaviour after the diffusion particle reaches the common 
boundary of these domains r(s) is determined by different variants of general 
(nonlocal) Feller-Wentzell conjugation condition [1]. This problem is also called 
the problem of pasting together two diffusion processes on a line or the problem of 
construction of mathematical model of physical phenomenon of diffusion in 
medium with membrane [2]. To solve the problem we use the analytic methods 
with an application of classical theory of parabolic potentials. With such an 
approach, assuming that diffusion characteristics of output diffusion processes are 
Hölder continuous with respect to both variables and diffusion coefficients are 
uniformly bounded away from zero, and curve r(s) satisfies Hölder condition with 
exponent >1/2, we obtain the integral representation of desired semigroup as a 
solution of corresponding conjugation problem for linear parabolic equation of 
second order with discontinuous coefficients. Note that earlier in [3] the problem of 
pasting together diffusion processes on a line was studied by the method mentioned 
above in sufficiently general formulation in case the membrane is placed in a fixed 
point r(s)≡r0. 
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The heat conduction problem in spherical multilayer geometries on the basis of 
Fourier law has been considered by Jain at all. in paper [1,2]. The subject of this 
contribution is an analysis of time-fractional heat conduction in an N-layered 
spherical cone and a hemisphere (Fig. 1). The time-fractional heat conduction in 
spherical coordinate is governed by the differential equation  
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where ,r   are spherical coordinates, ir , i  and ia  are outer radius, thermal 
conductivity and thermal diffusivity of the i-th spherical layer, respectively,  ,iT r t  
is the temperature in the i-th layer and  ,ig r t  is a volumetric energy generation, 
  denotes fractional order of the Caputo derivative with respect to time t. 
 

 

 

 

 

 

Fig. 1. A schematic diagrams of the N-layered spherical cone and hemisphere 

The boundary conditions are 
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and the conditions of perfect thermal contact between the layers are [3] 

    1, , , , , 1,..., 1i i i iT r t T r t i n        (5) 
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where ,a a   are inner and outer heat transfer coefficients and ,T T   are inner and 
outer ambient temperatures. The initial condition is assumed in the form 

    , ,0 ,i iT r F r    (7) 

An exact solution of the problem of the time-fractional heat conduction for 
 , 0ig r t   can be presented in the form of eigenfunctions series 
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y  are spherical Bessel functions and E  is the Mittag-Leffler function. 

 Using the solution (8), the temperature distribution in the spherical cone (or 
hemisphere) for different values of the order 0 1   can be numerically 
determined. The solution can be used to analysis of fractional heat conduction in a 
continuously graded body in spherical coordinates. 
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In the paper the impact of the regularity of distribution of compute nodes on the 
results of the simulation of two-component alloy solidification is analyzed. The 
solidification of Ni-Cu alloy is considered. It is characterized by the formation of 
ideal solutions in both the liquid and solid state, and an equilibrium phase diagram 
of the system is unlimited solubility of components in the solid state.  

The considered process is a dendritic solidification in the isothermal conditions 
with constant diffusivity coefficients for the solid or liquid phases. For the analysis 
the phase field method defined by Warren and Boettinger was applied [1,2,3].  

In this method, the growth of microstructure during solidification is determined 
by solving a system of two differential equations - the content of the solid phase (1) 
and the concentration of the dopant (2) in the analyzed area. 
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 (1) 

where: M is defined as the solid/liquid interface mobility,  is a parameter related 

to the interface width,   is the anisotropy factor, AH  and BH denotes the free 
energy of both components, cor is the stochastic factor which models 
thermodynamic fluctuations near the dendrite tip,   is the function of derivatives 
of  , 0  is rotation degree of structure. 
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where: cD  is the diffusion coefficient, mV is the specific volume, R  is the gas 
constant. 

To solve the differential equations  the generalized finite difference method was 
used [4]. Therefore anisotropy of the grid may be the result not only of the 
discretization of region but also the links  between the nodes of the mesh. 

Because the computation in the explicit scheme is performed the parallel 
calculation was used. The number of unknown variables was divided 
symmetrically between the computational nodes. The values of derivative in the 
nodes (1, 2) are determined at every step of calculations. They are a main factor 
which influence on the CPU load. The computation in the equations (1) and (2) 
have been implemented with using the Intel Xeon Phi architecture [5].  

The paper presents the results of calculations for the development of a single 
grain in the control region of the liquid phase of the shape of a square 6969 m 
and the growth time equal 1ms with assumed value of supercooling of liquid. 
Several types of grid nodes were considered. In the first case, the calculation was 
carried out (fig. 1) for a regular grid constructed with square units for different 
values of the parameter of width of the solidification front. From the assumptions 
of the method imply, that the width of a solidification front must be greater than the 
distance between the nodes of grid. The results of the calculations show that 
limitation for the selected numerical method is the distance in the value of 
derivatives between neighboring nodes for a single node. 

The second case was the comparison of the calculation results (fig. 2) for the 
same process parameters and the grid nodes rotated by 45 degrees. 
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Fig. 1. The shape of the solidified region for different values of the width of front  a) 0.8δ 

b) 1.0δ c) 2.0δ 

  

Fig. 2 The boundaries of the solidified region a) uniform square mesh, b) a uniform 
square mesh rotated through 45 degrees 

For these conditions of simulations differences in the obtained results are 
noticeable, particularly visible in the growth areas of secondary dendrite branches. 
It can also be observed in the width of the primary branch. In the third case the 
calculations (fig. 3) are performed for the regular mesh but different distances 
between the computational nodes for the x and y directions.  
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Fig. 3. The shape of the solidified region for grid △y = 1.2Δx a) 2000x2000 mesh nodes, 

b) 2500x2500 mesh nodes 

On the basis of obtained results can be concluded (for the presented model) that 
there is a strong dependence of the solid phase growth not only on the anisotropy 
of the grid but also on its density. All of the above examples of calculations were 
carried out with the assumption that to determine the value of derivatives the 
nearest eight nodes for GFDM are needed. Taking into account only six of them 
lead, for the structural grids to degeneration of the results (fig. 4). 

 

 
Fig. 4. Dopant concentration - inclusion in the model of 6 neighbouring nodes 

The simulation results for the dendritic solidification process show a strong 
dependence of the results, in the presented model, on the parameters of method for 
determining the derivative and a strong influence of the deployment of compute 
nodes. 

Keywords: numerical methods, computational mechanics, phase field model, solidification, 
generalized finite difference method, anisotropy of mesh 
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The modern technology allows obtaining multiple digital images with excellent 
quality. The value of image information is contained in them. Access to this 
information is possible through the processing and analysis of digital images 
obtained from different types of devices. Image processing involves the 
transformation of that it became possible to obtain the specific characteristics of the 
test image. The best effects of such actions are obtained considering each image 
individually, but it is time consuming. 

Image processing requires the use of detection of the characteristics features. 
Depending on how the image was captured, different methods and functions of the 
detection characteristics may be used. 

This article will explain how to detect them in the images of Earth from the 
aerial new. To simplify the calculation the images are converted to grayscale. In 
order to suppress the noise which often appears on this type of images there will be 
used convolution matrix mask with 2-dimensional matrix, discrete image [1] 
written by the following formula:  

 
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qpwqypxIyxI
,

12 ),(),(),(  (1) 

where:    
I1 – input image matrix, I2 – image matrix obtained after filtration, 
w(p,q) – mask (matrix) of the filter. 

 
Performing the above mentioned filtration requires the use of normalization [1], 

which is described by the following equation:  
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where:    
I2 – image matrix obtained after filtration, 
I3 – image matrix obtained after normalization, 
B – is the number of bits representing the pixel. 
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To detect characteristic features which are the corners Harris and Stephens [2] 
method will be used. This is one of many corner detection algorithms, Which is 
defined by :  

  
yx

yxIvyuxIyxwvuE
,

2)],(),()[,(),(  (3) 

where: 
w(x,y) – mask (matrix) of the filter. 

 
Objects in the input image are detected by using a detector surface Speeded-Up 

Robust Features (SURF) [3] described by the following formula:  
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where: 
Lxx(p,σ) etc. – second – order derivatives of the grayscale image, 
p=(x,y) – point in a image I, 
H(p,σ) – hessian matrix at point p and scale σ. 

 
Regions is another characteristic of the image used for the detection of stable 

areas in the paintings depicting different points of view. Detection of regions will 
be carried out using the method Maximally Stable Extremal Region (MSER). For 
MSERs we only Consider extremal regions [4] Which are defined by:  

 )()()(, qIpIRboundaryqRp ii   (5) 

where: 
I – imput image, 
Ri – extremal regions. 

 
In this presentation of the previously mentioned characteristic features, there 

will be used photos of the surrounding area of Czestochowa, derived from the 
Internet. 

 

 
Fig. 1. Example of the image subjected to detection characteristics of size 1536 x 768. 
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Fig. 2. The detection of characteristics features: the left by Harris and Stephens; to the 

right by Speeded-Up Robust Features (SURF). 

    
Fig. 3. The detection of characteristics features the method by Maximally Stable 

Extremal Region (MSER). 

     
Fig. 4. Examples of images subjected to detection of size 768 x 512 pixels. 

 
Fig. 5. Example of detection corners by Harris and Stephens. 
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Fig. 6. Example of detection objects by Speeded-Up Robust Features (SURF). 

 
Fig. 7. Example of detection regions by Maximally Stable Extremal Region (MSER). 

Keywords: corner detection, detection Harris, feature detection SURF, detection MSER 
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In the earlier papers we considered pseudogroups of transformations on discrete 
and antidiscrete topological spaces. The problem which appears is what are 
implications of considering such extraordinary cases as in applications we rather 
deal with pseudogroups on real number space with natural topology or in case of 
need pseudogroups on complex number space. There are two theorems which 
shows it is worth of considering.  
First theorem is connected with pseudogroups on antidiscrete topological spaces. It 
says that every group of transformation can be considered as a pseudogroup of 
transformations on an antidiscrete topological space. Let us recall the following 
definition introduced in [1]. 

Definition. A non-empty set   of functions, for which domains D f  are arbitrary 
non-empty sets, will be called a pseudogroup of functions if it satisfies the 
following conditions: 

1o    gf DDf    fg   for ,, gf  

2o f 1  for ,f  

3o    for    

where 

               :   is a function and   1  is a function   

and 
                                      f 11    : f  

and 1f  denotes an inverse relation. 
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 As we consider this definition we can simply say that every group of 
transformations is a pseudogroup of functions. It means that notion of  
a pseudogroup of functions is generalization of a notion of a group of transformations. 

The second theorem is connected with pseudogroups on discrete topological 
spaces. It says that if a generalized inverse semigroup is isomorphic with a 
pseudogroup of transformations on a discrete topological spacer then for any  
idempotent  exists smaller or equal to it idempotent for which does not exist 
smaller idempotent. 
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We recall the definition of the space ఊܹ[ܽ, ܾ]. 
Let [ܽ, ܾ] be a closed interval, where ܽ, ܾ ∈ ܴ, ܽ < ܾ, ݀ ≔ ܾ − ܽ. We assume 

that the following condition is fulfilled 

(Γ) ߛ: [0, ݀] → [0,∞)	is increasing and concave, γ(0) = 0, 
lim௧→଴శ (ݐ)ߛ = lim௧→ௗష ,(0)ߛ (ݐ)ߛ  .(݀)ߛ=

Definition 1. 
Denote by ఊܹ[ܽ, ܾ] the set of all r-times differentiable functions, where ݎ ∈ ܰ, 
defined on the interval [ܽ, ܾ] with values in ܴ, such that their r-th derivatives 
satisfy the following condition: there exists a constant ܯ ≥ 0	such that 

 ห߮(௥)(ݔ) − ߮(௥)(̅ݔ)ห ≤ ݔ|)ߛܯ − ,(|ݔ̅ ,ݔ̅ ݔ ∈ [ܽ, ܾ] (1) 

where ߛ fulfils condition (߁). 
The functions of the form (ݐ)ߛ = ఈ, where 0ݐ < ߙ < ݐ ,1 ∈ [0, ݀], fulfil the 

assumption (߁) and moreover ߛାᇱ (0) = +∞. Therefore the condition (1) is called 
the generalized Hölder condition or the ߛ −	Hölder condition. 

 
The space ఊܹ[ܽ, ܾ] with the norm 

 ‖߮‖ ≔ ∑ ห߮(௞)(ܽ)ห௥
௞ୀ଴ + ݌ݑݏ ൜หఝ

(ೝ)(௫)ିఝ(ೝ)(௫̅)ห
ఊ(|௫ି௫̅|)

; ,ݔ	 ,ܽ]߳ݔ̅ ܾ], ݔ ≠   ൠݔ̅

is a real normed vector space. Moreover, it is a Banach space.  
Consider the functional equation 

(ݔ)߮ = ℎ(߮[݂(ݔ)]) +   (ݔ)݃

We assume that the given functions the following conditions fulfil 

(i) 			݂߳ ఊܹ(ܫ), 		sup
ூ
|f′| ≤ 1 

(ii) ݃: ܫ → ܴ,			݃߳ ఊܹ(ܫ). 
(iii) ℎ: ܴ → ܴ	is	ܥ௥	class	and	ℎ(௥) fulfils the Lipschitz condition in ܴ. 
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We define functions ℎ௞: ܫ × ܴ௞ାଵ → ܴ, ݇ = 0,1,… ,  by the formula	ݎ

൝
ℎ଴(ݔ, =:(଴ݕ ℎ(ݕ଴) + (ݔ)݃

ℎ௞ାଵ(ݔ, ,଴ݕ … , =:(௞ାଵݕ
డ௛ೖ
డ௫

+ ݂ᇱ(ݔ) ቀడ௛ೖ
డ௬బ

ଵݕ +⋯+ డ௛ೖ
డ௬ೖ

௞ାଵቁݕ
					  (2) 

for ݇ = 0,1, … , ݎ − 1. 
Lemma 1. 

If the assumptions (i)-(iii) are fulfilled, then the functions ℎ௞ defined by (2) are 
of the form: 

1. for ݎ = 1 

ℎଵ(ݔ, ,଴ݕ (ଵݕ = ℎᇱ(ݕ଴)ݕଵ݂ᇱ(ݔ) + ݃ᇱ(ݔ);                                           (3) 

2. for ݎ ≥ 2, ݇ = 2,… ,  ݎ
ℎ௞(ݔ, ,଴ݕ … , (௞ݕ = ,ݔ)௞݌ ,଴ݕ … , (௞ିଵݕ + ℎᇱ(ݕ଴)ݕ௞൫݂ᇱ(ݔ)൯

௞ + 

+ℎᇱ(ݕ଴)ݕଵ݂(௞)(ݔ) + ݃(௞)(ݔ)                                                            (4) 

where 
,ݔ)௞݌ ,଴ݕ … , ൯(ݔ)௞൫݂ᇱݕ(଴ݕ)௞ିଵ)+ℎᇱݕ

௞ = 

 =∑ ℎ(௞ି௜ାଵ)௞
௜ୀଵ (଴ݕ) ∑ ఈభ…ఈ೔,௞ఈభା⋯ାఈ೔ୀ௞ି௜ାଵݑ ଵఈభݕ(ݔ)  ௜ఈ೔     (5)ݕ…

and the functions ݑఈభ…ఈ೔,௞ are of the class ܥ௥ି௞ାଵ in I, for all possible natural 
numbers ߙଵ, … , ଵߙ ௜ such thatߙ +⋯+ ௜ߙ = ݇ − ݅ + 1, ݇ = 2,… , ,ݎ ݅ = 1,… , ݇, 
(some of these functions are identically equal to zero). 
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Issues appear before engineers currently, require often perform very complex 
computer simulations on the basis of which can be introduced various kinds of 
changes to the analysed object (its geometric model). In a significant part of these 
simulations are calculated distributions of various physical quantities such as 
stresses, deformations, displacements and temperature. The computation of such 
distributions for a continuous object in the real space it is only possible in the 
approximate, by using of the numerical model contemplated phenomenon or 
physical processes. The numerical model is obtained by solving partial differential 
equations. These equations make up the mathematical model of the problem being 
studied. Analytical solution of the generated equations for the problems faced 
before the engineers in this time is in practice impossible. This is due to the fact 
that analysed objects usually have complex shapes and are imposed on them 
complicated boundary conditions. 

The most widely used in engineering simulations is discretization of the 
analysed area, that is, its division into smaller, geometrically simple areas. 
Discretization of the considered area  is used to transform a mathematical model of 
the issues on its numerical model [1,2]. The final result of this is a system of 
algebraic equations (usually linear) with a finite numbers of unknowns. 

Most frequently for solving of the resulting equations are used modern 
multicore architectures such as a graphics processors. Programming graphics 
devices is not easy and requires from the programmer to additionally knowledge 
about the hardware architecture. An effort associated with the adaptation of the 
algorithm to a multi-core architectures are not always profitable.  

The new standard of the C ++ x11 language is introduced of many facilities 
[3,4]. To the language was introduced build-in threads to perform computations in 
parallel on multiple cores. Furthermore, the r-references and a move semantics 
increased productivity programs. The language has also become easier to learn and 
use. 

They also support the implementation of numerical algorithms for general 
purpose processors while maintaining an expected high performance of the 
computation. 

The authors of the work has focused on the new elements of the C ++ language 
that can be used in the implementation of the computer simulations of the physical 
processes based on PCs. 
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Abstract: The aim of programming is to force a computer to execute some 
actions so that we get the expected behavior. The basic idea of behavioral theory is 
to determine a relation between internal, hidden states and their observable 
properties. In our contribution we sketch the main ideas of describing behavior of 
systems by coalgebras. 

 
1. INTRODUCTION 

 
The development of computers has contributed to the development of 

investigating dynamical features of formal structures. The dynamics involves a 
state of afairs which can be possibly observed and modified. We can consider the 
computer state as the combined contents of all memory cells. A user can observe 
only a part of this state, e.g. on display and he can modify this state by typing 
commands. As a reaction the computer displays certain behavior. The aim of 
programming is to force the computer to execute some actions and to generate 
expected behavior. This behavior can be positive, e.g. desired behaviour; or 
negative, e.g. side effects that must be excluded from the system. To describe the 
behavior of a computer system is a non-trivial matter. But some formal description 
of such complex systems are needed when we wish to reason formally about their 
behavior. This reasoning is required to achieve the correctness or security of these 
systems. 

The basic idea of behavioral theory is to determine a relation between internal 
states and their observable properties. The internal states are often hidden. 
Computer scientists have introduced many formal structures to capture the state-
based dynamics, e.g. automata, transition systems, Petri nets, etc. In [2] the notion 
of behavior in the algebraic specifications  was firstly introduced.  

 
2. ALGEBRAS AND COALGEBRAS IN COMPUTER SCIENCE 

 
The execution of a computer program causes generation of some behavior that 

can be observed typically as computer's input and output. There are also programs 
changing the internal state of computer that do not produce outputs, e.g. the 
programs running infinitely, sleeping processes in operating systems which weak 
up and work only in the case some event occurs. We are also interesting in their 
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behavior that can be observed using coalgebras. A program can be considered as an 
element of the (initial) algebra arising from the used programming language. In 
other words, it is an inductively defined set P of terms. This set forms a suitable 
algebra  

  PPF    

where F is a polynomial endofunctor constructed over the signature of the 
operations appointed for execution by a program.  
Each language construct corresponds to certain dynamics captured in coalgebras. 
The behavior of programs is described by a (final) coalgebra  

           PGP   

where the functor  G captures the kind of behavior that can be observed. In other 
words, generated computer behavior amounts to the repeated evaluation of a 
(coinductively defined) coalgebraic structure on an algebra of terms. Thus 
coalgebraic behavior is generated by an algebraic program. Therefore the algebras 
are used for constructing basic structures used in computer programs and 
coalgebras acting on the state space on the computer describe what can be observed 
externally. The relationship between algebras and coalgebras can be regarded as 
duality. A data type is completely determined by its constructors, algebraic 
operations going into data type. The state can be observed via the visible values 
and can be modified. In coalgebra it is realised by using destructor operations 
pointing out  of the structure. 

Coalgebra can be recognized as the study of the states, their operations and 
properties. States can be imagined as a blackbox to which we have only limited 
access. The essence of the coalgebraic behavioral theory is the tension between 
what is actually inside and  what can be observed externally. 

 
3. BASIC CONCEPTS 

 
Coalgebraic concept is based on category theory [3,4]. A category C is  a 

mathematical  structure consisting of objects, e.g.  A, B, …  and morphisms of the  
form   f: A  B  between them. Every object has its identity morphism  idA: A A  
and morphisms are composable. Because the objects of a category can be arbitrary 
structures, categories are useful in computer science, where we often use more 
complex structures not expressible by sets. Morphisms between categories are 
called functors, e.g. a functor  F: C  D  from a category C to a category D which 
preserves the structure. In this contribution we use only the category Set with sets 
as objects and functions between them as morphisms, but this approach can be 
extended to categories of arbitrary complex objects. 
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The starting notion in coalgebraic approach is a signature used in the theory of 
algebraic specifications [1]. A signature  Σ consists of types, e.g. σ, τ, …  and 
operation symbols of the form  f: σ1 , …, σn  τ. In a signature we distinct 

 constructor operations defined inductively. They tell us how to generate  
(algebraic) data elements; 
 destructor  operations, also called observers or transition functions defined  
coinductively. They tell us what we can observe about our data elements; 
 derived operations that can be defined inductively or coinductively. 

If we define a derived operation f  inductively, we define the value of f on all 
constructors. In a coinductive definition of derived operation f we define the values 
of all destructors on each outcome  f(x).  
 
4. COALGEBRA AS OBSERVATION 

 
For a polynomial endofunctor F introduced in the previous section, an  

F-coalgebra is a pair 

cU ,   

where U is a set called state space and c: U  F(U)  is the coalgebraic structure or 
operation of the coalgebra cU , . The difference between F-algebra and  
F-coalgebra is the same as between construction and observation. While F-algebra 
tells us how to construct elements in the carrier set by the algebraic structure         
a: F(U)  U going into U, in the case of coalgebra, the coalgebraic operation    
c:U  F(U)  goes out of U. In coalgebras we do not know how to form the 
elements of U, we have only the operations working on U, which may give some 
information about U [5]. Therefore, we have only limited access to the state space.        
F-coalgebras are also models of the corresponding signatures, but instead of the 
case of F-algebras, these coalgebras are based on destructor operations.  
A coalgebraic structure is a tuple of functions (destructors) [6] 

    UFUdestrdestrc n  :,...1 . 

Example: Consider the signature for data type stack. It specifies type S for stacks 
and type I  for items of stacks. Signature for stack has two destructor operatios 

    
IStop
SSpop




:
:

 

where top returns a top element of a stack and pop removes a top element from top 
of stack. If a stack is empty, the operation top returns nothing. S can be considered 
as a state space, objects of a category of states. These operations generate 
polynomial endofunctor SSF :  defined by  
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          ISSF  1)( , 

where 1 denotes an empty stack. Corresponding coalgebraic structure is then the 
pair of operations 

   ISStoppop  1:,  

and F-coalgebra  is  a structure 

toppopS ,, . 

In other  words, S  is the state space and we can observe the change of states via 
observable values from I.  By repeating  execution of the operations  pop and top 
we get a sequence of observable values 

 niii ,...,, 21 ,  for some Nn  

of elements of a stack and a sequence of not observable states 

 newss ,...,, 21 , 

where the last member of this sequence is the empty stack. The sequence of 
elements of I  is only what we can observe about the whole process. We see that we 
can get observable values of data structure not at once but step by step after 
repeated application of the operations top and top. 

 
5. CONCLUSION 

 
In this short contribution we presented the main ideas of coalgebraic approach 

of  behavioral theory. On a simple example of data structure stack we illustrated 
how the signature's destructor operations induce polynomial endofuctor that is the 
basic concept in coalgebraic approach. In our future research we extend this 
approach to some paradigmas of programming including concurrent processes and 
object-oriented programming. 
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We consider the rare polynomial mappings of two complex variables having 
one and two zero at infinity. We prove that if the Jacobian of these mappings is 
constant, it must be zero. The work concerns the problems related to the Keller 
mappings. Recall that the Keller mapping is a polynomial mapping 2 2:F C C  
satisfies the condition Jac = const 0F  . In this work, non-Keller mapping are 
those whose the Jacobian being constant must vanish. 

 
I. The rare polynomial mappings having one zero at infinity 

 
Let 2, :f g C C  be the complex polynomials of degrees 2k.+1 and 2k,  

consequently, and having one zero at infinity. We consider the rare mappings of the 
form 

 
1

2 1
1

1 zeros

0 ... 0 ...
k

k

k

f X f f






        (1) 

and 
 2

1
1 zeros

0 ... 0 ...
k

k

k

g X g g


        (2) 

where 2k   and  , ,i jf g X YC  are the forms indicated degrees.  

Lemma 1. If    1 1Jac , Jac , = constf g f g  then  Jac , 0f g  . 

Proof. see [1] 
 
II. The rare polynomial mappings having two zeros at infinity 
 

Let 2, :f h � �  are the complex polynomials of degrees 4 2 and 4k k , 
consequently, and having two zeros at infinity. Assume  
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2 2 2 1 2 3 2

2 1 2 1
1

2 1 zeros

0 ... 0 ...
k k k

k k

k

f X Y f f f f f f
 

 



            (3) 

and 
 

2 2 1 2 2

2 2
1

2 1 zeros

0 ... 0 ...
k k k

k k

k

h X Y h h h h
 



          (4) 

where 2k   and  , ,i jf h X YC  are the forms of the indicated degrees. 
 

Lemma 2. If    1 1Jac , Jac , = constf g f g , then  Jac , 0f g  . 
 
Proof. see [2] 
 

The above lemma suggests that, if the polynomial mapping   2 2, :f h � �  has 
two zeros at infinity and the constant Jacobian, then  Jac , 0f h  . Therefore it 
remains to analyze only the case when the mapping (f, h) has only one zero at  
infinity, and thus takes the form 

 
1 2 1...

p p

pf X f f f
 

      (5) 
and 
 

1 2 1...
q q

qh X h h h
 

      (6) 

where ,i jf h  are the forms (of two variables) of degrees i, j respectively. 

We show that there are non-trivial class of mappings having one zero at infinity 
with the constant Jacobian, for which that Jacobian vanish. It appears, therefore, 
that in the general case, the polynomial mapping having one zero at infinity and the 
constant Jacobian, must be vanish Jacobian. This would mean that the Jacobian 
conjecture takes place only in the simplest case, when 

  f P X cY     and   h X   (7) 

where  P X  is a polynomial of variable X. 
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The geometric structure of a plane domain or, more general, contained in 
hypersurface embedded in the Euclidean space or, even more general, on a 
manifold can impact the behavior of some analytic objects defined on such 
domains. In particular it can determine spectral properties of differential operators. 
It is known that selfadjoint elliptic operators on compact Riemannian manifolds 
have a discrete spectrum. Such spectrum can be ordered into a monotonic sequence 
of eigenvalues. Roughly speaking: the geometry determines the spectrum. In the 
case of the classical laplasjan this can be expressed as follows. The spectra of the 
Laplace operator for two isometrically congruent Riemannian manifolds coincide. 
We say namely that two such manifolds are isometrically congruent, if there is an 
isometry, i.e. a transformation of the one onto the other, preserving the metric. A 
question (problem) is, if the dependence take place also for other elliptic operators 
and what is a quantitative influence on the considered spectra. That is the essence 
of the so called straight problem. The inverse problem can be formulated as 
follows. Does, and if yes, how much,  the spectrum of the Laplace or other elliptic 
operators determines the geometry of the domain (manifold)? 

This two problems are the pivots of spectral geometry - a branch of 
mathematics that developed and braided with other branches like: differential 
geometry, PDEs, representations and so on. Deriving from them it was giving them 
at the same time a creative inspiration. 

The sources of spectral geometry must be found in papers by  Herman Weyl 
from the beginning of the past century. The ideas embodied there enlightened the 
whole century and constituted an inspiration to many mathematicians and also 
intermediately (though the Ahlfors papers) to me. Here I would like to mention two 
papers by Weyl [7 and 8]. They contain a spectral resolution for the Laplace 
operator in a domain of R2,  or the elasticity operator 

 a grad div - b curl curl ,          3a > 4b> 0, (1) 

in a domain of R3,where curl is the rotation of a vector field. 

The Weyl formulas obtained there for thee asymptotic distribution of 
eigenvalues  imply in particular, that the spectrum determines uniquely the volume 
of the domain. Let us notice by the way that both the Laplacian and the elasticity 
operator are elliptic. 
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The problems, methods and spectacular solutions attracted the attention of many 
mathematicians Several excellent papers have appeared. A comprehensive list of 
references can be found in the very good book by P. B. Gilkey [2]. To the most 
famous papers of the spectral geometry belongs surely the one-page paper by  
J. Milnor [5]. 

A turbulent development of the theory in the second half of the 20-th century 
was surely caused by the famous paper by M.Kac [4] under provocative tittle Can 
one hear the shape of a drum. This should explain, at least partially, the tittle of this 
exposition. 

In the talk I would like to refer to problems presented in the paper [4] and with 
help of simple examples bring them closer to the listeners. 

By the way I would like to mention also my small contribution to the subject. 
i.e. the paper [6] with B. Orsted. We derived there among other formulas for the 
asymptotic distribution of the eigenvalues of the Ahlfors operator, being on an 
arbitrary Riemannian manifold a counterpart of the elasticity operator (1). The 
formulas obtained by us reduce in the three-dimensional flat case to that of Weyl 
from the year 1915. 

I would like to mention also some recent results by C. Gordon, B. Webb and  
S. Wolpert [2] or  S. Zeltdich [9]. 

Keywords: spectral geometry, isospectral problem, elliptic operators, ellipticity at the 
boundary  
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In the last few decades, fractional calculus has many applications in different 
areas of physics, geology, engineering and bioengineering [1 – 5]. 

In this paper the one – dimensional time fractional advection diffusion equation 
in a half – space is considered  

      
x

txTv
x

txTa
t

txT











 ,,,
2

2





 (1) 

where   denotes fractional order of Caputo derivative [6] and ,10   
,0  x 0,0,0  vat . 

The equation (1) is supplemented by the zero initial condition 

   00, xT , (2) 

the zero condition at infinity 

   0,lim 


txT
x

 (3) 

and the Dirichlet boundary condition 

    tgtT 0,0   (4) 

with  t  being the Dirac delta function. 
To solve the Dirichlet problem under consideration the new sought – for 

function is introduced 

    txu
a
xvtxT ,

2
exp, 








  (5) 

Using the Fourier sine transform with respect to the spatial coordinate x  and the 
Laplace transform with respect to the time t  gives 



Mathematical Modelling in Physics and Engineering 
 

61 
 

  

a
vas

gaxu

4

,~
2

2
0

*









. (6) 

Inversion of the integral transforms results in the solution 
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where   ,E  is the Mittag – Leffler function in two parameters  , . 
Taking into account formula (7) the equation (5) can be written in the form 
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The numerical calculations carried out using  the nondimensional quantities. It 
is seen from the examples  that decreasing of the order of the fractional derivative 
  leads to retardation of the mass transport process. 

Keywords: advection – diffusion equation, Caputo fractional derivative, Laplace 
integral transform, Fourier sine transform, Mittag – Leffler function 
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Sandwich panels are typically composed of three layers: two external, thin and 
relatively rigid facings and a thick, but light and flexible core. From the point of 
view of static analysis, panels with thin and flat facings and panels with thick or 
deep-profiled facings are distinguished [1]. In the latter case, the structural 
behavior of a sandwich beam can be described by two differential equations  

 



CCSS

DSIV

CC

D

AG
q

B
Mw
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AG
B , (1) 

  



CC

D
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D

AG
B

AG
V

B
BB

AG
B , (2) 

where vertical deflection w and shear strain γ are the functions of the position 
coordinate x. The GC and AC denote shear modulus and cross-sectional area of the 
core, q is the distributed transverse load and θ is an initial curvature induced by a 
temperature difference between facings. The term BS corresponds to the bending 
stiffness of the facings with respect to the global centre line of the sandwich panel, 
whereas BD represents the sum of the bending stiffnesses of the facings with 
respect to their own centre lines. The terms M and V denote the bending moment 
and shear force, respectively. Deep-profiled sandwich beams are very interesting 
because they are internally statically indeterminate [2]. Even a simply-supported 
single-span beam requires six boundary conditions and thermal action always cause 
bending moments and shear forces. For this reason, it is tempting to apply 
approximate solutions that are easier to use [3, 4].  

To find an approximate solution, it is assumed that the applied load is shared 
between two separate load-carrying systems, namely the sandwich part, which 
includes the influence of core shear, and the flange part which merely involves 
bending of the facings. These two systems are quite independent except that their 
deflections coincide at some critical point, usually at mid-span. In the case of a 
simply-supported beam carrying a uniformly distributed load q, the deflections at 
mid-span of the two parts (sandwich and flange) can be presented as: 
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where qS, qD, L and k denote the load component carried by the sandwich part, the 
load component carried by the flange part, the span of the beam and the shear 
factor, respectively. Using qS+qD=q and wS=wD we come to: 
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   1qqS , (7) 

 qqD  . (8) 

Comparing the approximate solution specified by (3-8) with the analytical 
solution resulting from (1-2) it can be observed that the differences between the 
solutions depend largely on the span of the beam. The shorter beam the greater the 
differences (for the span L = 2.50 m the relative error for the extreme displacement 
is 0.63%, and for L = 5.00 m only 0.10%). The biggest difference is for bending 
moment MD (6.2% for L = 2.50 m). The presented approximate method, although 
effective, can be used only for simple static systems. 
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Young measures appear in many engineering problems. In nonlinear elasticity, 
for example, we minimize the energy functional of the form 

(ݒ)ܬ  = ∫ ݂൫ݔ, ,(ݔ)ݒ ൯ஐ(ݔ)ݒ∇  (1) ,ݔ݀

where: 
- Ω is elastic body under consideration; 
 is its displacement; it is usually an element of a suitable Sobolev ݒ -

space ܸ; 
- ݂ is the density of the internal energy. 

The so called direct method is a widely used method of minimizing such 
functionals. 

However, energy functionals of certain materials, as laminates or various types 
of alloys, do not attain their infima. It is connected with what engineers call 
‘microstructure’ and is caused by the fact, that the density of the internal energy is 
not quasiconvex with respect to the third variable. The minimizing sequences (ݒ௡)	 
are functions of a highly oscillatory nature and are divergent in the strong topology 
of ܸ, but they are weakly convergent. It has been discovered by Laurence Chisolm 
Young in [4], that the weak* limits of the sequences of the form ቀ݂൫ݔ,

,(ݔ)௡ݒ  .൯ቁ are in general measures, nowadays called the Young measures(ݔ)௡ݒ∇
The Young measure associated with a sequence is in fact a family of probability 
measures depending measurably on points of Ω. Its existence relies on the Riesz 
representation theorem. However, calculating an explicit form of a Young measure 
is in general a very difficult task. 

The simplest form of a Young measure is a ‘homogeneous Young measure’. It is 
in fact a ‘one parameter family’, i.e. it does not depend on points of Ω. It serves  as 
a source of examples and in many real world cases it is the generalized minimizer 
of the considered integral functional, see for example [1] and [3]. 

In [2] a relatively simple method of deriving an explicit form of a homogeneous 
Young measure is proposed. It avoids using complicated functional analytic 
machinery. Instead, a change of variable theorem in multiple integrals is used.  

The results presented here can be considered as a natural continuation of those 
in [2]. Namely, we recognize homogeneous Young measures as a certain class of 
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constant measure valued mappings. Then we prove an elementary characterization 
principle: it turns out, that the homogeneous Young measures are image measures 
of the Lebesgue measure with respect to the appropriate Borel function. 

Keywords: homogeneous Young measures, minimizing sequences, nonlinear functionals 
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The main aim of this paper is to outline a new approach to determine the critical 
load of buckling of axially functionally graded (FG) beams subjected to a 
distributed axial load. The main idea presented here is to approximate FG beams by 
an equivalent beam with piecewise exponentially varying material properties, 
geometrical properties and axial load. 

Functionally graded beams are composed of two or more materials and are 
characterized by a continuous variance in their material properties in the preferred 
direction. It is well known that beams are structural elements which carry 
compressive load. When compressive load crosses a critical value, elastic beam 
deviates from an original equilibrium state and buckling occurs. A list of papers on 
buckling aspects of the homogeneous structures is very extensive. For example 
Kukla and Skalmierski [1] presented the solution to the problem of vibrations of an 
Euler-Bernoulli beam, which is loaded by an axial force varying along the length of 
the beam. Exact mathematical solutions for buckling of structural members for 
various cases of beams, arches, rings, plates and shells are shown in Wang et al. [2]. 

The gradient variation in functionally graded beams may be oriented along the 
cross-section and/or axial direction. A list of papers on buckling behaviour of FG 
beams with thickness-wise gradient variation is very wide. For example, in paper 
[3] by Vo et al. the finite element model for vibration and buckling of functionally 
graded sandwich beams, based on a refined shear deformation theory, is presented. 
Li and Batra [4] derived analytical relations between the critical buckling load of a 
functionally graded Timoshenko beam and that of the corresponding homogeneous 
Euler-Bernoulli beam subjected to axial compressive load. Free vibrations, 
buckling and post-buckling of functionally graded beams containing open cracks, 
by assuming an exponential variation of material properties in the thickness 
direction, were studied by Yang and Chen [5]. 

For axially graded beams stability problems are becoming more complicated 
because of the governing equation with variable coefficients. For example Singh 
and Li [6] investigated the stability of axially functionally graded tapered beams 
through discretising a non-uniform column into a stepped multi-uniform column 
and solving a transcendental equation to compute the critical buckling load. Free 
vibrations and stability of axially functionally graded tapered Euler-Bernoulli 
beams were studied by Shahba and Rajasekaran [7] by using the differential 
transform element method. The finite element approach to the free vibration and 
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stability analysis of axially functionally graded tapered Timoshenko beams was 
applied by Shahba et al. [8]. A new approach to exactly calculate the critical 
buckling loads of beams with arbitrarily axial inhomogeneity was presented by 
Huang and Luo in [9]. 

In this study the stability analysis of axially graded beams with a distributed 
axial load is made. Considerations are carried out in the framework of the Euler-
Bernoulli beam theory. The proposed approach is based on these presented by 
Kukla and Rychlewska in [10] and Rychlewska in [11]. It is assumed that the 
changes of material properties as well as the axial load are approximated by an 
exponential form. The obtained solutions of the buckling analysis for clamped-
clamped, pinned-pinned, clamped-pinned and pinned-clamped beams are applied 
for numerical computations. Critical buckling loads are determined from the 
existence condition of a non-trivial solution in the resulting system of algebraic 
equations. 

Keywords: functionally graded beams, buckling load, Euler-Bernoulli beam theory 
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We consider two cases of a vibration problem: free and forced vibrations of 
annular and circular composite membrane . The thickness and the material density 
of the membrane (Fig.1) change step-wise at circles with radii 1 2 1, , , mr r r  . 

 
 Fig. 1. A schema of the composite annular membrane. 

The differential equation to vibration of a membrane is: 

  
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2 2
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j j
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j j jh s  ,  , , 0F r t   for free and    , , , ,F r t f r t s   for forced 

vibrations. The functions ju  satisfy the continuity and the boundary conditions: 

   1, , , ,j j j ju r t u r t  ,      
   1, , , ,

j j

j j

r r r r

u r t u r t
r r
 

 

 


 
       (2) 

  1 0 , , 0u r t  ,        , , 0m mu r t    (3) 

Additionally, for the problem of forced vibrations, the initial conditions are 
assumed. 

Considering the free vibration of a circular membrane, we seek [1] the mode 
shapes in the form: 

 a 
b 
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      1 0 2 0j k n j kn j j j kn j jU r C J r h s C Y r h s       (4) 

where the eigenfrequencies kn  are roots of  equation which is obtained by using 
conditions (2-3): 

    det 0 A  (5) 

 In the case of forced vibrations, a solution to the problem we seek in the form  
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Substituting (6) into (1) and using the orthogonality of functions  jk nU r , we 

obtain an differential equation  for the functions  kn t which is complemented by 
initial conditions. The solution is as follows: 
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    (7) 

 The analytical solutions of the problems, have been used to perform numerical 
computations [1-2] to show the effects of parameters characterized the non-
uniformity of composite membranes on the vibrations. 
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The results of the theoretical and numerical studies concerning the issue of the 
stability of the slender non-prismatic column [1] subjected to the generalised load 
by a force directed towards the positive pole (the case of the specific load [2]) are 
presented in this work. Changeability of the cross-section of the considered system 
along its axis was modelled due to column dividing into the n smaller prismatic 
segments of constant length l and thickness h and variable width b. In this studies it 
was assumed that the total volume of each segment is constant. Additionally, the 
width b of the particular element should be greater than or equal to the thickness  
h ( hb  ). An approximation of the shape of the column by the linear function 
    dxZaxb  2  and by the polynomial of degree 2       qpxqpaxb  2,2 , 

where  Lx ;0 was analysed in this work. The considered case of the specific load is 
realised by the loading and receiving heads, built of the elements of circular 
outlines [3] (constant curvature).  

 
Fig. 1. The physical model of the considered nonprismatic column 
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On the basis of the defined physical model, taking into account Bernoulli - 
Euler’s theory, the total potential energy of the system was determined. Based on 
the static criterion of the loss of the stability (the principle of the minimum 
potential energy) [4], the boundary problem was formulated. The differential 
equations of the transverse displacements and the geometrical and natural boundary 
conditions were defined.  

By substituting obtained solutions of the differential equations of the 
displacements into the boundary conditions and the continuity conditions, the value 
of the critical load of the analysed column was determined. The performance of 
series of numerical computations allowed to the designation of the influence of the 
shape of the considered system and the geometrical parameters of the structure 
implementing external load on the stability of the nonprismatic column. For the 
boundary problem, as defined above, looking for shapes that are the most 
advantageous leads up to the selection of the appropriate values of the width of the 
cross-section of the each segments in such a way that the transferred critical force 
is a s large as possible (calculation of  the global maximum of the function of the 
critical load).  
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Theoretical considerations and results of numerical simulations relating to the issue 
of the stability of a slender nonprismatic column subjected to the selected case of a 
specific load are presented in this work. Carried out studies included the flexibility of 
structural joints of the mounting and the structure implementing load [1].  

Geometry of the column analysed in this paper is presented in figure 1. 
Modelling of a cross-section variable along the axis was possible to achieve thanks 
to dividing the column into n smaller segments of constant thickness h and length l 
where .constLnl  . According to the assumed extra condition of constant total 
volume of the system .constVobj  , variable along the axis width of the cross-
section b was described by means of linear function     dxZaxb  2  and 
polynomial of degree 2       qpxqpaxb  2,2 , where  Lx ;0 . Load by a 
follower force directed towards the positive pole (the case of specific load) is 
guaranteed by the elements of circular outlines - loading and receiving heads [2]. 
Load is transferred to the column by the rigid element of length l0. Force P is 
tangential to the deflection of free end of the system and its directions passes 
through the stationary point O located on the undeformed axis of the column below 
the free end of the system (the positive pole). In the physical model of the column, 
the flexibility of structural joints in the mounting (elasticity C1, 0x ) and in a 
support of the free end (springs of the elasticity C2 and C3, Lx  ) was taken into 
consideration. 

On the basis of the physical model of the analysed column the mathematical 
model of the system was defined. The total potential energy was determined. Based 
on a static criterion of stability loss, after prior calculations of the potential energy 
variation, the differential equations of displacement and the natural boundary 
conditions were obtained. The development of the calculations programmes 
allowed for the multidimensional analysis of the issue of the stability of considered 
column.  
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Fig. 1. The physical model of nonprismatic system subjected to the follower force directed 

towards the positive pole regarding to the flexible of the structural joints [1, 3] 

The results of numerical calculations determining the influence of the variable 
cross-section of the column along the axis of the system, the elasticity of the 
flexible structural joints and the geometry of structure implementing the external 
load on the value of the transferred critical force were included in this work. The 
results were presented in the dimensionless form and referred to the appropriate 
values obtained in the case of a prismatic system of the same total volume, which is 
a comparative system. Taking into account assumed scope of the width of the 
cross-section, the most advantageous shapes of the considered nonprismatic 
system, for which the obtained increases in the critical load were the biggest, were 
indicated.  
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Currently there are variety of types of biometric systems based on signature [1],  
gait [2],  fingerprint [3],  hand geometry [4] or palm print [5]. Each of these 
systems is to less or more extent burdened with some defects. Some biometric 
features can be easily prepared, for example fingerprints. The next example can be 
a palm print when a finger  having been wounded  makes the print look differently 
and will not be accepted by the system. The biometric system based on palm vein 
does not have these defects. The vein pattern is unique and unchanging for each 
person. This trait can be collected in a non invasive and safe way. The blood 
vessels pattern cannot be faked because the vessels are under the skin. The 
acquisition of the pattern is carried out by lighting the hand with the near- infrared 
light. The image is taken with a CCTV active-matrix infrared camera. Furthermore, 
living features are automatically checked with the systems. 

Presently, in the field of hand blood vessels research a few interesting methods 
to create the biometric systems based on vein pattern can be found. In the papers 
[6] there is a description of the construction of biometric system based on palm 
vein, which uses a two-dimensional Gaussian function to create filters with which 
the image is being searched to find as many blood vessels as possible. Hamming 
distance was used for pattern matching. In other works [7] a three-stage algorithm 
was proposed allowing to create the biometric system to identify people by means 
of blood vessels in a hand. The contrast enhancement and thresholding of hand 
blood vessels belong to the first stage of the project. The feature extraction and 
matching are based on the Gabor wavelet. In another research work [8] Jacobi 
algorithm is used to find  vein and characteristic points. The well-known Euclidean 
distance was used for pattern matching. 

Defining the region of interest (ROI) is one of the most important steps in 
creation of the biometric system based on the hand blood vessels. Employment of 
the ROI allows building a biometric system and facilitates the user's authorization. 
One of the first steps in the proposed method is the extracting of the hand area by 
binarization. Then, the points P1, P2, P3 are determined. These points define hand 
border between fingers. Through the P1 and P2 points the line S is placed. The 
parallel line L is appointed to the lower edged of the image which at the same time 
crosses the point P1. The angle θ (1) between the S and L lines is used to rotate the 
hand with respect to the coordinate system. 
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The next step is connecting P1 and P2 points. The distance between those points 
defines the height and the width of the determined area. 

 
Fig.1. Palm vein image preprocessing: a) Original palm vein, b) Binary palm vein image, c) 

two data points P3 and P2 are selected and the palm image is rotated an angle θ between lines S 
and L d) based on line M, a square region is located and denoted as the ROI 

To extract features a two-dimensional density function is used, described by the 
following formula (2): 
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One of the steps is designing the filters to localize the curvature  horizontally 
and vertically and two diagonally, where the first and second derivative of two-
dimensional density function will be used. Based on curvatures, local maximal 
points along the cross-section of the input image will be determined. The next step 
is to connect the designated vein centres and all veins positioning. This is done 
basically by checking m pixels located to the right and left of (x, y) along the 
adopted projection direction. With so designated a vein line for all considered 
directions the final pattern of blood vessels is created. 

To create the features vector the characteristic elements were used as it was 
similarly applied in the minutiae, used to analyse fingerprint, ending and 
bifurcation veins. 
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The considered in this study external load was introduced into scientific 
literature by L. Tomski [1]. The specific load is realized by means of the loading 
heads with the outlines in the shape of circular, parabolic or linear elements. The 
load can be realized by: generalized load with a force directed towards a negative 
or positive pole or a follower force directed towards a negative or positive pole - 
point localized below the loaded end of the column on its undeformed axis. The 
line that connects the pole and the loaded end of the structure creates a line of 
action of external load. 

In the figure 1 the investigated column is presented. The damage of the system 
is in the form of one sided open crack which is simulated by means of the 
rotational spring of stiffness C. Furthermore the crack divides a slender structure 
into two elements. The element length relation is as follows – total length l = l1+l2. 
In the point of the crack presence the continuity of transversal and longitudinal 
displacements as well as bending moments and deflection angles are satisfied by 
natural boundary conditions. The external load marked as P is realized by the 
loading heads with circular outlines. On the loaded end the mass m is placed  in 
order to simulate the mass of the loading heads. 

The loading structure is composed of two elements. The first one (load inducing 
head) has radius R. The radius R has a center in the pole to which an external force 
is directed. The second head (load receiving head) has radius r. The distance 
between the top end of the column and the contact point of heads is marked as l0.  
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Figure 1. Investigated system subjected to generalized load by a force directed  

towards a positive pole 

The boundary problem is formulated with the use of the Hamilton’s principle in the 

form: 0)T(
2

1


t

t

dtV .  

The main scope of this theoretical investigations is to present an influence of the 
parameters of the loading heads on instability, free vibrations and critical load 
magnitude of the column presented in the figure 1. Such a combination of the 
loading heads parameters is searched at which the column will be the least 
sensitive to defect presence. 
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This article is devoted to some problems connected with multicriteria decision 
analysis, wherein the pairwise comparison matrix (PCM) is the basic source of 
information about decision maker's preferences. Based on such a PCM  one can 
estimate a  priority vector (PV) i.e. a vector of priority weights assigned to 
considered decision alternatives. There are a number of prioritization methods 
allowing us to obtain the PV from the PCM.  They work  well when the PCM is 
consistent i.e. when it satisfies the following definitions, [7]: 

Definition 1 

A given matrix A=[aij]nxn is called  reciprocal PCM   if  the condition aij=1/aji holds 
for any i,j =1,…n.   

Definition 2 

A given matrix A=[aij]nxn is called consistent PCM (or cardinally transitive) if it is 
reciprocal and its elements satisfy the condition:  aijajk = aik  for all i, j, k =1,…,n.  

The necessary and sufficient condition for any positive matrix A to be consistent is 
the existence of a certain vector w satisfying aij=wi/wj  for  all i,j=1,…,n.  

It is argued that good decision maker gives “consistent” judgements about 
priority ratios, but the real-world practice shows something different. The human 
brain is not a perfect calculating machine so the decision maker’s judgements do 
not create a perfectly consistent PCM. The errors may be the result of the usage of 
a limited number of allowed estimates (so-called scales), human brain limitations 
or they may have other sources. In every case the very important  question is: 
whether we can use a given PCM to derive the decision maker's priority vector? In 
order to answer this question, various inconsistency indices have been introduced 
in literature. However it is still not known whether the smaller value of a given 
index is related to smaller value of PV estimation errors.  In our presentation we 
show examples that it is not always the truth. Thus another fundamental question 
arises: what is the relationship between priority ratios disturbances and PV 
estimation errors? 

More precisely, following the idea presented in [4,5,6,7], we assume the 
following stochastic model for the judgments about priority ratios given by the 
decision maker in the PCM: 
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ijij w

wa      (1) 

Probability distributions of the so-called perturbation factor ij   mainly involve  
log-normal, gamma, uniform (e.g. Budescu et al 1986, Zahedi 1986, Basak 1998, 
Grzybowski 2010 ) and truncated normal ( e.g. Choo & Wedley 2004, Lin 2007, 
Grzybowski 2012). Apart from these most popular probability distributions,  one 
can also find applications of the Laplace, Couchy, triangle and beta  p.d., for 
discussion see e.g. Dijkstra 2014 .  

In our paper we study the relationship between the probability distribution of 
the perturbation factor  in (1) and the distribution of PV estimates errors. For this 
purpose we make use of the Monte Carlo simulations. In our studies we adopt the 
simulation framework introduced in [Grzybowski 2016]. Within this simulation 
setup we generate perfect PCM based on randomly selected “true” PV and then we  
disturb it assuming different distributions of ij  in (1) . Next we derive the estimate 
of the PV from such a PCM and analyze the estimation errors, i.e. the relative 
diffrence between the “true” and the estimated PV. The errors are given by the 
following formula: 

RE(v,w) = 

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ii
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Finally we calculate and compare the statistical characteristics of the above RE  
distributions and study their relationship with the characteristics of the perturbation 
factor characteristics. 
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Abstract: In this paper we present several selected examples illustrating observing of 
behavior by coalgebras. We show this approach on the example of bank account, infinite 
lists and Fibonacci numbers. 

 
1. INTRODUCTION 

 
We present in this paper some motivating examples of coalgebras. After the 

necessary section with the basic notions we introduce some motivating examples of 
coalgebras. Examples are inspired by practical problems from applied computer 
science. We show basic formulation and construction of coalgebras on very famous 
practical problems – simple description of bank account and important operations 
over it, on Fibonacci numbers and on (possibly) infinite lists. 

Coalgebras are very important part of theoretical computer science. Their main 
role is in describing the generated behavior of running programs [1, 2]. This is the 
behavior that can be observed on the outside of a machine, for instance on the 
screen. Coalgebra is an abstract notion of observable behavior. It is a study of states 
and their operations and properties. The set of states is usually seen as a black box, 
to which one has limited access [3]. A relation between what is actually inside and 
what can be observed externally is the foundation of the theory of coalgebras [2]. 
Coalgebras include many familiar systems, e.g. streams, trees, automata, relations 
etc. 

 
2. BASIC NOTIONS 

 
We start with the definition of F-coalgebras for endofunctor. An F-coalgebra, also 
called coalgebra of type F or F-system,  is a pair cC, , where C is a state space 
(or base set) of the coalgebra and c  is the structure map of the coalgebra on C: 

.: FCCc   

This structure map acts as a destructor. It takes an element of the coalgebra and 
decomposes the element into its constituent parts. This is a common feature of 
coalgebras and this point of view is dual to the point of view that algebras are 
objects together with combinatory principles [4]. 
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A coalgebra homomorphism form a commutative square (Fig. 1) and the 
coalgebras and their homomorphisms form a category of coalgebras. The identity 
map is always a homomorphism and the composition of two homomorphisms is 
again a homomorphism. This is an immediate consequence of the conditions 
defining the functor. Thus, for a given functor F, the class of all F-coalgebras forms 
a category [5] 

 

Fig. 1 Commutative diagram for coalgebras 

 
3. EXAMPLES 

 
We illustrate here three interesting examples of coalgebras and their application 

in computer science: coalgebraic description of simple bank account, infinite lists 
and Fibonacci numbers. 

 
3.1 Bank account 

 
Let X be interpreted as a collection of very rudimentary bank account states 

similar to [5]. At a state x of the carrier, two usual operations are possible: to show 
the actual balance attribute of the state,  xbalance  or to modify the account state 
to a new state  nxdeposit ,  using an input real n. Let these functions be defined as 
follows: 

XRXdeposit
RXbalance



:
:

 

After applying the currying on deposit, a coalgebra structure map is defined as 
follows: 

.: RXXc R   

Taking the functions balance and deposit together, structure map is defined as 
.,depositbalancec   A bank account with these functions is a coalgebra for 

the functor   .RXXF R   It holds 
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     ,,
,

1

2

nxdepositnxc
balancec











 

where the maps 1 and 2  stand for obvious projections defined to product. 

This coalgebra models a correct bank account which records in the state the history 
of all deposited sums and returns the total balance on the account when the 
function balance  is applied. 
Let the state space X be the set of finite strings over reals and let the symbol  x  
denotes the sum of all reals in x. Then the functions in coalgebra are defined as 
follows: 

   
  ,::,

,
rxrxdeposit

xxbalance



 

where double colon denotes the operation join into the list (sequence). 
 
3.2 Infinite lists as coalgebras 

 
Viewing a data structure as being perpetually in the process of creation, rather than 
as a result of a completed computation is typical for observation of behavior 
[6].  According to this view a list may be thought of as a partial computation that, 
when induced, computes just far enough to determine whether the end of the list 
has been reached, or , if not, to produce the next element of the list together with a 
suspended computation to compute the remainder of the list. Then possible to 
define infinite lists (also known as streams) that continually generate the next 
element, without ever reaching the end of the list [4]. 

Let X be a state space. A coalgebra for lists is given by a set X and two maps 

XXtail
AXhead




:

:  

where A is a fixed set of values. A structure map of coalgebra is defined as follows: 

,: XAXc   

Where operations head and tail are parts of structure map ., tailheadc   Now 
we consider the set functor 

  XAXF   

for a fixed set A. A coalgebra for this functor consists of a set X and a structure map 

Given any such coalgebra, each value Xx  gives rise to an infinite stream over 
the set A, namely: 
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         ,,, xheadtailxheadtailxhead 2  

Hence, for any F-coalgebra ,X , we can define a mapping f from X to the 
collection of (possibly infinite) streams over X (denoted X ), by defining 

 
 

  




otherwise.

undefinedis if
xheadtailn

xc
xf n .

;()


 

The map f is an example of coalgebra homomorphism. In the second case, the 
resulting function may be defined only for certain value n. 
 
3.3 Coalgebra for Fibonacci numbers 
 

We close this section with the well-known mathematical structure of Fibonacci 
numbers that are formulated coalgebraically. This example was inspired by 
approach in [3]. In object-oriented languages class is a structure that encapsulates 
data with operations on them. A coalgebraic specification can be seen as 
specification of such a class, where observers capture the data and the methods 
their operations. 

Coalgebraic specification Fibonacci 

Operations: 

 
XXnext

NXval



:

:  

Assertions: 
        xvalxnextvalxnextnextval   

Creation: 
 

   1
1




newnextval
newval

 

Fig. 2 A coalgebraic specification of a Fibonacci numbers system 

An initial state is considered as new. A model of a coalgebraic specification 
consists of a structure map of coalgebra c  and of an initial state that satisfies the 
creation conditions. As a state space we take a set 

        mfmfmfnmNNnfX N  12.|,  

together with the operations: 

   nfnfval ,  and    1 nfnfnext ,, . 
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The resulting coalgebra structure map c  is XNXnextval :, and it 
satisfies the assertion from coalgebra specification in Fig. 2. As an initial state we 
take a tuple   ,, Xfibnew  0 where the function NNfib : is 
recursively defined Fibonacci function satisfying   10 fib ,   11 fib  and 

     mfibmfibmfib  12 , for all Nm  . Here the states 
  Xnf  ,  implicitly keep track of the stage n in the infinite sequence of 
Fibonacci numbers.  

 
4. CONCLUSION 
 

We presented in this paper very fruitful examples of describing the behavior of 
several systems known from practice. These systems were considered as transition 
systems. Our next goal is to investigate bisimilarity, the relation between states and 
coinductive proofs of behavior. 
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Queueing systems with requests of random space requirement (or random 
volume) are the generalization of the classical queueing models [1, 2]. They can be 
used to model and solve various practical problems in design of computer and 
communicating systems. In particular, such models can be applied for buffer space 
volume determination in the nodes of communication networks. 

Consider the closed system [3–5] in which N terminals are served by n identical 
servers. Each terminal generates its request after some thinking time having an 
exponential distribution with parameter .  We assume that each request needs 
some memory space. The size of such need (i.e. request volume) we denote by   
and assume that   is a non-negative (discrete or continuous) random value (RV). 

Let }{)( xPxL   be the distribution function (DF) of the RV .  We denote 
by )(t  the number and by )(t  the total volume of requests present in the system 
at time instant t. The values of process )(t  are limited by constant value 0V  
that is named memory volume of the system. Assume that the system under 
consideration contains the common queue with nNm   waiting places. 

We denote our system by the notation M/M/n/m/(N,V). 
At the epoch   of the generation process termination, the request of volume y is 

accepted to the system if mn   )(  and Vy   )( . Then, we have 

1)()(    and .)()( y   In opposite case, we have )()(   and 

)()(  , the request will be lost and the terminal starts generation of the next 
one. 

The accepted request starts its service by one of free servers, if .)( n  In 
opposite case, the request waits for service in the queue. We assume that the order 
of requests service is in congruence with FIFO discipline. Service time doesn’t 
depend on the request volume and has an exponential distribution with parameter 

.  If the request of any terminal was accepted to the system, the generation of the 
next request starts after its service termination. 

For the system under consideration, we determine the stationary distribution of 
the number of requests present in the system and the loss probability of a request. 
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Let   be the steady-state number of requests in the system. Introduce the 
notation: 

....,,2,1},{ mnkkPpk   

We prove that 


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)()(
* VL k  is the k-fold Stieltjes convolution [6] of the DF )(xL  for .Vx   

For request steady-state loss probability lossP  we obtain the relation: 

,
)(

1

0

11
loss

 


 




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where ./  
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The first attempts to describe the temperature field in welding and allied 
processes in the middle of the last century have been undertaken. Modeling the 
temperature field during welding was initiated by works by Rosenthal [1] and 
Rykalin [2], who assumed point and linear models of heat source, respectively. 

For analytical description of the temperature field the heat conduction 
differential equation is commonly used [3]: 

    
t
Q

ct
tTtTa











1,,2 rr  (1) 

where r denotes the radius vector of the considered point in relation to the the heat 
source, T - temperature, t – time, a - thermal diffusivity, c – specific heat, ρ – 
density, Q – heat source. 

In the case of a point source the solution of equation (1) for infinite body is in 
the form: 

  
 

 atR
atc

QTtRT 4/exp
4

, 2
5.10 


 (2) 

R denotes the distance from the source to considered point. For semi-infinite body 
the solution is: 

  
 

 atR
atc

QTtRT 4/exp
4
2, 2

5.10 


 (3) 

or 

  
 

   









 


at
zyyxx

atc
QTtzyxT

4
''exp

4
2,,,

222

5.10 
 (4) 

Equation (4) determines the temperature at the point with coordinates x, y, z by the 
source position x’,y’. In Fig. 1 a temperature distribution in the infinite body caused 
by instantaneous point source of heat (4) is presented. In calculation the 
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thermomechanical properties of material are assumed a = 8·10-6 m2/s, c = 5,2·106 
J/m 0C, heat source Q = 3,3·103 J and initial temperature T0 = 0. 

  
Fig. 1. Temperatures near the temporary heat source: a) heat cycles for points at different 

distances from the source; b) temperature distribution in the body for some times. 

The adoption of a point heat source used in works mentioned above gives for 
the points located near the center of the weld results significantly deviating from 
the actual temperature values. Therefore Eagar and Tsai [4] proposed 2D Gaussian 
distributed heat source model (Fig. 2). 

 
Fig. 2. Two-dimensional Gaussian distributed heat source 

Since then many researchers have tried to obtain a solution closest to the real 
temperature distribution. Double-ellipsoid, three-dimensional heat source (Fig. 3) 
as the first introduced Goldak [5] (5 - 6). 
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Fig. 5. Double ellipsoidal Goldak’s model of heat source 
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 (6) 

 
Fig. 6. Double ellipsoidal Goldak’s model of heat source 
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Hongyuan et al. [6] proposed a tilted double ellipsoidal heat source (Fig. 6) (7 – 8) 
to calculate the temperature field using the finite element method. Importing the energy 
fraction ff  + fr = 2 gives the heat source formula for forward half ellipsoid: 

 

      

  22
2

2

2
2

cos/3exp
sin

/3exp

sin
/3exp0,,,







czby

atvxfQtzyxQ f





















 (7) 

and for rear half of ellipsoid: 

 

      
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



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
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







 (8) 

In [7] desricption of three dimensional temperature field a volumetric heat 
source of Gaussian surface distribution is assumed (Fig. 7) with parabolic change 
in relation to depth (Fig. 8) (9). 
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z
z
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xxqq

B
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where z0 depth of heat source deposition, and rB averaging radius of distribution of 
Gaussian heat source. 

 
Fig. 7. Gaussian surface distribution of the heat source 

Analytical solution of temporary temperature field in half-infinite body 
caused by moving heat source tilted towards the direction of motion (Fig. 9) is 
presented in [8] (10 – 12). 
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Fig. 8. Parabolic change of the heat source in relation to depth 

 
Fig. 9. Distribution of tilted heat source in relation to depth. 
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for gzz ,0'  and 2/2/   , which fulfills the condition 

 '''
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dydxdzqq
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where zg denotes 

 cos0zzg   (12) 

Assumed a single distributed heat source model in the temperature field 
descriptions does not allow always to reproduce the irregular shapes of the 
isotherms (including fusion line and heat affected zone limits) occurring in welding 
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practice. Therefore, in the temperature field modeling of the welding processes the 
bimodal heat sources are used, especially in hybrid processes (e.g. [9]), but also to 
surfacing by welding process description [10]. 

Keywords: heat source model, temperature filed, welding, modelling 

References 

[1] Rosenthal D., Mathematical theory of heat distribution during welding and cutting, Welding J., 
20 (1941), 220–234 

[2] Rykalin N.N., Tieplovyje osnovy svarki, AN SSSR, Moskva, 1947 
[3] Carslaw,H.S., J. C. Jaeger J.C., Conduction of heat in solids, Oxford University Press, 1973. 
[4] Eagar T.W., Tsai N.S., Temperature fields produced by traveling distributed heat sources, 

Welding J., 62 (1983), 346– 355 
[5] Goldak J., Chakravarti A., Bibby M., A new finite element model for welding heat sources, 

Metall. Trans., 15B (1984), 299–305 
[6] Hongyuan F., Qingguo M., Wenli X., Shude J., New general double ellipsoid heat source 

model, Science and Technology Welding and Joining, 2005, 10, 361 –368. 
[7] Winczek J., Analytical solution to transient temperature field in a half-infinite body caused by 

moving volumetric heat source. Int J Heat Mass Transf 53 (2010), 5774-5781 
[8] Parkitny R., Winczek J., Analytical solution of temporary temperature field in half-infinite body 

caused by moving tilted volumetric heat source, Int. J. Heat Mass Transf. 60 (2013), 469 – 479 
[9] Piekarska W., Kubiak M., Three-dimensional model for numerical analysis of thermal 

phenomena in laser-arc hybrid welding process, Int. J. Heat Mass Transfer, 54,2011, 4966-4974 
[10] Winczek J., New approach to modeling of temperature field in surfaced steel elements, Int. J. Heat 

Mass Transf., 54, 2011, 4702–4709. 
 

  



Mathematical Modelling in Physics and Engineering 
 

94 
 

FINDING THE EXPECTED VOLUMES OF REQUESTS IN 
QUEUING NETWORK SYSTEMS WITH A LIMITED NUMBER  

OF EXPECTATIONS 

Paweł Zając, Mikhail Matalytski 
Institute of Mathematics, Czestochowa University of Technology,  

 Czestochowa, Poland 
pawel.zajac@im.pcz.pl, m.matalytski@gmail.com 

This presentation describes the method of finding the expected volume of 
requests in open HM-network without requests the same type of queuing systems. 
Considered the case when the change in volume associated with transitions 
between states of the network are deterministic network functions dependent states 
of network and time, and service systems are single line. It is assumed that the 
probability of requests network systems, the input stream and requests parameters 
depend on time. 

The work included business model a wireless network, where the network is a 
collection of wireless access points iS , each of which gives the user the ability to 
connect to the network of information by the next available port and use its 
resources, ni ,1  . Each access point can simultaneously connect multiple users to 
the network. 

An estimate of overall volume of data (data packets) for each wireless access 
point (WAP) at the given point in time is an important task when designing a 
wireless network, because it allows to locate the highly loaded WAP and distribute 
the load evenly over them. 

Therefore, you must determine the average total volume of data (packets of 
users) received by the access points to the network information (eg. Internet), 
taking into account the limited number of simultaneous connections by this point. 
This problem can be solved by using HM-network of queuing theory. According to 
the queuing network (network Q) we mean a set of interconnected systems iS  with 
a limited buffer size 

iL  to store the queue of request packet. By network Q 
understand the user’s request to the WAP, which is a data packet. 

The analysis of the network without the system around the same type with 
stream and service parameters. The analysis of the network without the system 
around the same type of flow parameters and service, time-dependent. Charts 
volume for such systems may consist of the following form (figures 1-2). 
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Fig. 1. The volume of requests in the system 

1S  for T=[0,10] 

 

 

Fig. 2. The volume of requests in the system 
2S  for T=[0,10] 

Keywords: queuing networks, volume of requests, HM-networks, wireless access point 
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The paper shows connection between the selected algorithms and artificial 
intelligence in the thermo-mechanical issues.  

The work presents thermo-mechanical the analysis of the phenomenon 
illustrated with an  example of Fourier equations:  

   c
t

 


   


 (1)  

where T-the temperature, t- the time , λ-the thermal conductivity,   specific heat, 
c  thermal conductivity [1], [2]. The problem of heat conduction belongs to the 
initially-boundary issues. Initial conditions are used to assign certain values at the 
initial moment. Four types of boundary conditions that are associated with a 
complex heat exchange are distinguished [1]. 
     The method involves the use of swarms algorithms in heat conduction. One of 
the selected algorithms is bee algorithms with allow you to search the solutions to 
the problem based on the process of acquiring the nectar by bees. Initially, a group 
of bees scouts in a randomly selected direction distributed aim if the search areas 
are rich in inflorescence. After returning to the hive, they shall inform other bees 
about their best discovery. Through bee dance information is transmitted about the 
quality, direction and distance of food from the hive.  

The general scheme of the ABC algorithm is as follows: 

Initialization Phase  
REPEAT  
  Employed Bees Phase 
  Onlooker Bees Phase 
  Scout Bees Phase 
  Memorize the best solution achieved so far 
UNTIL(Cycle=Maximum Cycle Number or a Maximum CPU time) 
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The use of the above methods of artificial intelligence will allow the 
determination of the parameters used in the equations, numerical initially-boundary 
issues with boundary conditions of type III and IV. 

The third type of boundary condition (Newton): on the boundary Γ of the area Ω 
the heat exchange with the environment occurs: 

    : ( )otq         (2) 

where α is the coefficient of heat exchange with the environment, T is the 
temperature of the body on the boundary Γ and Tot is the ambient temperature, q is 
the heat flux entering (T < Tot) into the area Ω or the effluent  
(T> Tot) from the area Ω. 
The fourth type of boundary condition (continuity condition): on the boundary Γ 
separating the areas Ω 1 and Ω 2 flow of heat occurs. There are two cases for this 
boundary condition:  
• ideal contact 
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(1) (2)
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where n is the normal vector to the Γ boundary, 

• no perfect contact (contact through an additional layer) 
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