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 The conference Mathematical Modeling in Physics and Engineering – 
MMPE’18 is organized by Czestochowa Branch of Polish Mathematical Society 
jointly with the Institute of Mathematics of Czestochowa University  
of Technology.  

Mathematical modeling is at the core of contemporary research within a wide 
range of fields of science and its applications. The MMPE’18 focuses on various 
aspects of mathematical modeling and usage of computer methods in modern 
problems of physics and engineering. The goal of this conference is to bring 
together mathematicians and researchers from  physics and diverse disciplines  
of technical sciences. Apart from providing a forum for the presentation of new 
results, it creates a platform for exchange of ideas as well as for less formal 
discussions during the evening social events which are planned to make  
the conference experience more enjoyable. 

This year’s conference is organized for the 10th time. Every year the conference 
participants represent  a prominent  group of recognized  scientists as well as young 
researchers  and PhD students from domestic and foreign universities. This time we 
have invited speakers from Silesian University of Technology and University of 
Occupational Safety Management in Katowice as well as  from other higher 
education institutions: Technical University of Košice, Vasyl Stefanyk 
Precarpathian National University, Jan Długosz University, Poznan University of 
Technology, University of  Lodz and Technical University of Czestochowa. 

 
 
 

       Organizers 
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NUMERICAL ALGORITHMS FOR FRACTIONAL OPERATORS 

Krzysztof Bekus  

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

krzysztof.bekus@im.pcz.pl 

Keywords: fractional calculus, Caputo derivative,  numerical methods 

Fractional calculus is used in mechanics, biology, economy, chemistry and other 
areas of science. In recent years scientists research more and more about this topic 
and many interesting articles and books were published. Fractional operators has 
been described in a lot of works (see example [3-7]). They have been studied from 
both numerical and analytical point of view. In contrast to classical derivative, 
where its value is determined at a given point, fractional derivatives are non-local 
operators. In this paper we study Caputo derivative of order α>0, defined as 
follows [1]: 

( D a+

αC
y)(x)= 1

Γ (n−α )∫a

x
y

(n)( t)dt

( x− t)α− n+1

  

(1) 

 

which is left Caputo fractional operator, n=[α]+1, and 

( D b-

αC
y)( x)=

(− 1)n

Γ (n− α )∫x

b
y

( n)(t)dt

(t− x)α− n+1

  

(2) 

 

which is known as right Caputo fractional operator. 
We focus our attention on Caputo derivative with fixed memory length L. These 

types of operators were used in [2] where the problem of one-dimensional tension 
of the fractional continua under linear elasticity with Dirichlet's boundary 
conditions was analysed.  

{Lα− 1Γ (2− α )
2

∂
∂ X

( D a1+
αC U − D a2-

αC U )+
b
E

= 0

U ( X= 0)= 0
U ( X= l )= 0.01l

  

(3) 

 

The Caputo derivative was approximated by modified trapezoidal rule.  
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In this paper we apply different approach to this problem using series 
representation of fractional derivative with fixed memory length L. We compare 
both approaches by calculating numerical values of fractional derivative for 
particular functions.   

References 
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[2] Błaszczyk T., Sumelka W. Fractional Continua for linear elasticity, Archives of Mechanics 2014, 
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Modeling, Publishing Office of Częstochowa University of Technology, Częstochowa 2017 
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POLYNOMIAL MAPPINGS  
WHICH HAVE TWO ZEROS AT INFINITY 

Grzegorz Biernat 

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

grzegorz.biernat@im.pcz.pl 

Keywords: Jacobian, zeros at infinity, Jacobian Conjecture 

This work contains the theorems concerning the algebraic dependence of  
polynomial mappings having two zeros at infinity in the case when the leading 
forms of the co-ordinates of the mapping are the power of the product XY  of the 
variables X, Y. 

 
Let ( ) 2 2, :f h →ℂ ℂ  be the polynomial mapping  having two zeros at infinity. 

 
Theorem 1. Let  

 ( ) 2 1 2 2 2 3 1...
p

p p pf XY f f f f− − −= + + + + +  (1) 

and  

 ( ) 2 1 2 2 2 3 1...
q

q q qh XY h h h h− − −= + + + + +  (2) 

where 1p q≥ ≥ .   

If ( ) ( )1 1Jac , Jac ,f h const f h= =  then exist the form 1̂h  for which 

 
1

1 1 1 1 1

1 1 1ˆ ˆ ˆ...
p p

pf X Y h A X Y h A X Y h
q q q

−

−
     

= + + + + + +     
     

 (3) 

and 

 
1

1 1 1 1 1

1 1 1ˆ ˆ ˆ...
q q

qh X Y h B X Y h B X Y h
q q q

−

−
     

= + + + + + +     
     

 (4) 

for some constants 1 1 1 1,..., ,...,p qA A and B B− − . 
 
The proof proceeds by induction. 
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Theorem 2. Let  

 ( ) ( ) ( ) ( )( ) 11 2 1 1... ...
pk l

k l p k l p k l pf X Y f f f f+ − + − + − += + + + + + +  (5) 

 ( ) ( ) ( ) ( )( ) 11 2 1 1... ...
qk l

k l q k l q k l qh X Y h h h h+ − + − + − += + + + + + +  (6) 

where k l>   (k and l are relativity prim) and 1p q≥ ≥ .  

If ( ) ( )1 1Jac , Jac ,f h const f h= =  then exist the forms 1 2 1
ˆ ˆ ˆ, ,...,k l k lh h h+ − + −  for which 

 

1 2 1

1

1 1 2 1

1 1 2 1

1 1 1ˆ ˆ ˆ...

1 1 1ˆ ˆ ˆ...

1 1 1ˆ ˆ ˆ...

p

k l
k l k l

p

k l
k l k l

k l
p k l k l

f X Y h h h
q q q

A X Y h h h
q q q

A X Y h h h
q q q

+ − + −

−

+ − + −

− + − + −

 
= + + + + 
 

 
+ + + + + 

 

 
+ + + + + 

 

…………………………………………………

 (7) 

and 

 

1 2 1

1

1 1 2 1

1 1 2 1

1 1 1ˆ ˆ ˆ...

1 1 1ˆ ˆ ˆ...

1 1 1ˆ ˆ ˆ...

q

k l
k l k l

q

k l
k l k l

k l
q k l k l

h X Y h h h
q q q

B X Y h h h
q q q

B X Y h h h
q q q

+ − + −

−

+ − + −

− + − + −

 
= + + + + 
 

 
+ + + + + 

 

 
+ + + + + 

 

…………………………………………………

 (8) 

for some constants 1 1 1 1,..., ,...,p qA A and B B− −   
 

The proof of the theorem also goes through induction. 

References 
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[3] Bass H., Connell E.H., Wright D., The Jacobian conjecture: reduction of degree and formal 
expansion of the inverse, American Mathematical Society. Bulletin. New Series 7 (2): 287–330, 
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FRACTIONAL STURM-LIOUVILLE PROBLEM WITH 
DIFFERENT TYPES OF BOUNDARY CONDITIONS – 

NUMERICAL APPROACH 

Tomasz Błaszczyk 1, Mariusz Ciesielski 2, Małgorzata Klimek 3 
1Institute of Mathematics, Czestochowa University of Technology,  

 Czestochowa, Poland 
2Institute of Computer and Information Sciences, Czestochowa University of Technology,  

 Czestochowa, Poland 
3Institute of Mathematics, Czestochowa University of Technology,  

 Czestochowa, Poland 
1tomasz.blaszczyk@im.pcz.pl, 2mariusz.ciesielski@icis.pcz.pl, 3mklimek@im.pcz.pl 

Keywords: fractional calculus, Sturm-Liouville Problem, numerical solution 

In the paper, we study the regular fractional Sturm-Liouville problem (FSLP) in 
a bounded domain 

 ( ) ( )( ) ( ) ( ) ( ) ( )CC

b a
D p x D y x q x y x w x y x− +

α α + = λ  (1) 

subject to different types of boundary conditions 
 

- mixed boundary conditions 

( ) ( )0, ( ) 0C

a x b
y a p x D y x+

α

=
= =  (2) 

- von Neumann boundary conditions 

( ) ( ) ( ) ( )1 10, 0C C

b a b ax a x b
I p x D y x I p x D y xα α α α

− + − +
− −

= =
= =  (3) 

The problem of finding an exact solution of the FSLP, where the Laplacian 
consist of both the left and right fractional derivatives [1], is still a big challenge 
for scientists. Hence, a numerical approach to solving the studied FSLP is only way 
(at present) to calculate the respective eigenvalues (approximate eigenvalues). 
 

In this work we discussed a numerical schemas to calculate the approximate 
eigenvalues and eigenfunctions for the analysed FSLP, by utilizing the approach 
presented in papers [2, 3, 4]. First, we transform the Euler-Lagrqange equation into 
an integral equation. Afterwards we discretize the obtained equation by using the 
numerical quadrature rule based on linear interpolation. This method leads to the 
numerical scheme for which the experimental rate of convergence, in all the 
considered cases (mixed and Neumann boundary conditions), tends to 2α. It should 
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be highlighted that the orthogonality of the approximate eigenfunctions is kept at 
each step of procedures. 

  

Fig. 1. Eigenfunctions for the first 4 eigenvalues for order {0.6,0.8,1}α ∈  

As the numerical example we consider the generalization of the classical 
harmonic oscillator problem with p = 0, w = 1 and q = 0. Eigenfunctions for the 
first 4 eigenvalues are presented in Figure 1. 

References 

[1] Ciesielski M., Klimek M., Blaszczyk T., The Fractional Sturm-Liouville Problem - Numerical 
Approximation and Application in Fractional Diffusion, Journal of Computational and Applied 
Mathematics 2017, 317, 573-588. 

[2] Blaszczyk T., Ciesielski M., Numerical solution of fractional Sturm-Liouville equation in 
integral form. Fract. Calc. Appl. Anal. 2014, 17(2), 307-320. 

[3] Blaszczyk T., Ciesielski M., Fractional oscillator equation - transformation into integral 
equation and numerical solution. Appl. Math. Comput. 2015, 257, 428-435. 

[4] Klimek M., Ciesielski M., Blaszczyk T., Exact and numerical solutions of the fractional Sturm-
Liouville problem. Fract. Calc. Appl. Anal. 2018, 21(1), 45-71. 
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CLASSIFICATION OF THE BRAVAIS LATTICE AND 
CRYSTALLINE STRUCTURES  

Lena Caban, Joanna Kurek 

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

lenacaban95@gmail.com, asiakurek19@gmail.com 

Keywords: crystallography, Bravais lattice, crystallographic point groups 

In this paper we present the basic notions about crystal structures. At the 
beginning we define the Bravais lattice, named after Auguste Bravais, a French 
physicist, crystallographer and mathematician. In geometry and crystallography, 
the Bravais lattice is an infinite array of discrete points in three dimensional space, 
the position vectors of which have the following form 

 
��⃗ = ���⃗� + �	�⃗	 + �
�⃗
                                           (1) 

 
where �⃗�, �⃗	, �⃗
 are known as primitive (basis) vectors which are linearly 
independent and spans the lattice and ��, �	, �
 are any integers. For any choice of 
position vector ��⃗ , the lattice looks exactly the same. 
 

The Bravais lattice determines the nature of periodic ordering of the repeating 
structural elements of the crystal in space. These elements can be single atoms, 
groups of atoms, ions, or polymer strings of solid matter.  

In two-dimensional space, there are 5 Bravais lattices, grouped into four crystal 
families. In three-dimensional space, there are 14 Bravais lattices. These are 
obtained by combining one of the seven lattice systems with one of the centering 
types. The centering types indicate the locations of the lattice points in the unit cell. 

 
Then we consider crystallographic point groups and space groups. The 

crystallographic point group or the crystal class is a set of symmetry operations 
with one fixed lattice point. These symmetry operations include reflection, 
inversion, rotation, improper rotation (without translation). The crystal structure 
determines the existence of 32 crystallographic point groups. We present them in 
two notations: Hermann–Mauguin notation and Schoenflies notation. The first 
notation is named after Carl Hermann, the German crystallographer and Charles-
Victor Mauguin, the French mineralogist. This notation is also called international 
notation, because it was adopted as standard by the International Tables For 
Crystallography. The second notation is named after Arthur Moritz Schoenflies, the 
German mathematician, known for his contributions to the application of group 
theory to crystallography. The Schoenflies notation is mainly used in spectroscopy. 
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The space group of the crystal structure additionally contains translational 
symmetry operations. These include pure translations, screw axes and glide planes. 
There are 230 possible space groups. 

Finally, we will provide some important examples of crystalline structures along 
with chemical elements crystallizing in these structures. 

References 

[1] Ashcroft N.W., Mermin N.D., Solid State Physics, Holt, Rinehart and Winston, 1976. 
[2] Ibach H. Luth H., Solid-State Physics. An Introduction to Principles of Materials Science, 
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[3] Kittel C., John Wiley & Sons, 1976. 
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APPLICATION OF THE KRONECKER TENSOR PRODUCT FOR  
MODELLING THE DEPHT OF NITROGEN DIFFUSION PROCESS 

Anita Ciekot 

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 
anita.ciekot@im.pcz.pl 

Keywords: polynomial interpolation,  Kronecker tensor product, depth of nitrogen         
diffusion 

In this paper a new formula of tensor interpolation by polynomial of two 
variables is applied to modelling the depth of nitrogen diffusion process of 
austenitic steel type 316L. The coefficients of interpolating polynomial were 
formulated by using the Kronecker tensor product. Headers should include the 
name of the conference.  

 
The process of plasma nitriding was describe by the interpolating polynomial of 
two variables: temperature and time. The measurements were performed in 
hydrogen-nitrogen plasma for the following parameters: temperature T = 325 – 400 
C and time of the process t = 2 – 4 h.  The specimens were located directly on the 
cathode. During the experimental plasma nitrogen process the following values of 
diffusion depth were obtained:  

[( ) ] [ 0.56;  0.98;  1.01;  0.88;  1.38;  1.80;  1.44;  1.96;  2.15;  1.61;  2.26;  2.51 ]= transp
C jlw  

  
In this case the interpolating polynomial is expressed by the following formula: 

 ( ) 1 1

1 4

1

 

 3

( , ) − −

≤ ≤
≤ ≤

=  i k
c c ik

i

k

W T t c T t   

with coefficients 

( ) ( ) ( ) ( ) ( )4 1 4 3 1 3

1 4 1 2
3

 

 1

ˆ ˆ,. ,., ,. ,.,
1 1 ( ) .

−+ + −

≤ ≤
≤ ≤

τ τ
= − −

π π
i ji k j l k j

c C jlik
j j l
l

T T T t t t
c w  

where 
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( )( )( ) ( )( )
( )( )( ) ( )( )
( )( )( ) ( )( )
( )( )

11 4 1 3 1 2 1 21 3 1 2 1

12 4 2 3 2 2 1 22 3 2 2 1

13 4 3 3 2 3 1 23 3 2 3 1

14 4 3 4 2 4 1

               

      

    

)

  

(

π = − − − π = − −

π = − − − π = − −

π = − − − π = − −

= − − −π

T T T T T T T T T T

T T T T T T T T T T

T T T T T T T T T T

T T T T T T

 

( )14 4
ˆ,., ,.,−τ i jT T T  and ( )13 3

ˆ,., ,.,−τ k jt t t  are the fundamental symmetric polynomials 

of rank 4 and 3 of the variables 1 4
ˆ,., ,.,jT TT  and 1 3

ˆ,., ,.,jt tt  respectively. The symbol 

ˆ
jT   means omitting the variable  jT . 

Here,  [ ]j
iT  describes temperature of the nitriding process,  and [ ]l

kt   times of 
exposition of a specimen in given temperature.   

The computations have been performed by using the Maple software. 
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Fiber Bundle Model (FBM), with statistically distributed strength-thresholds of 
the individual fibers, is one of the most common theoretical approaches used to 
investigate the fracture and breakdown of disordered materials [1-2].   

We consider a two-dimensional bundle of fibers consisting of a N L L= ×  
fibers organized on a square lattice and clamped at both ends. The bundle is 
subjected to a quasi-statically increased load F  parallel to the fibers’ direction. 

The fibers break if the load applied on them exceeds their strength-threshold ithσ , 

1,...,i N= . The load carried by the destroyed fibers is transferred among the 
surviving fibers according to a given load transfer rule. We explore two classical 
load transfer rules, namely global load sharing (GLS) and local load sharing (LLS). 

The strengths of the fibers are independent and identically distributed quenched 
random variables. Most of the studies deal with uniform or Weibull distribution of 
strength-thresholds. The Weibull distribution is a type III extreme value 
distribution and relates to minima. In this study, we employ the Fréchet 
distribution, also known as type II extreme value distribution. This distribution, 
bounded from below and characterised by heavy upper tail, can be seen as the 
inverse Weibull distribution. Cumulative distribution function of strength-
thresholds is given by: 

  ( ) exp
m

th
thP

σσ
γ

−   = −  
   

 (1) 

where m  and γ   are shape and scale parameter, respectively. 
We performed numerical simulations of the loading process for bundles with a 

number of fibers ranging from 8 8N = ×  to 320 320N = × . Analysis is restricted 
to the cases with finite mean and finite variance of strength-thresholds ( 2m > ). 
The scale parameter is assumed to be 1. Application of quasi-static loading allows 
one to obtain minimal load cF  that is needed for destruction of the bundle. Critical 

loads are scaled by the appropriate bundle sizes /c cF Nσ = . 
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We have found that for the GLS rule the mean critical load cσ  asymptotically 

tends to 

 ( )( ) ( )( )mm m

Nc ξξσ −− →
−−

∞→ 1ln
1

 (2) 

and ( )mξ  represents the function 

 ( ) ( )( )( ) 111
1 exp

−−−
− −−⋅−= mmWmmξ  (3) 

where ( )( )1 1
1 expW m m− −

− − −  is a Lambert W  function.  

For finite N the following formula is proposed (see Fig. 1) 

 ( )( ) ( )( ) ( )








+−−=

−− −
−

− 0406.01
ln6684.0

5619.0

1)exp(9244.0
11ln mm

c N
m

m
mm ξξσ . (4) 

In this work, we have also investigated values of the mean critical loads for the 
LLS rule and distribution of critical loads. 

 

Fig.1. The mean critical load versus linear system size for different values of shape 
parameter. The dashed lines represent fitting by (4). 

References  

[1] Hansen A., Hemmer P. C., Pradhan S., The Fiber Bundle Model: Modeling Failure in Materials, 
Wiley 2015. 

[2] Pradhan S., Hansen A., Chakrabarti B.K., Failure Processes in Elastic Fiber Bundles, Rev. Mod. 
Phys. 2010, 82, 499-555. 

 



Mathematical Modeling in Physics and Engineering 

 

21 
 

MIXED MATRIX PROBLEMS                                                                             
AND THEIR APPLICATIONS 
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In this talk we present review and some new results on solving mixed matrix 
problems over  rings, fields and skew fields. They  often arise and have a lot of 
applications in various branches of mathematics such as linear algebra and   theory 
of representations of  rings and algebras.  
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Consider two intervals on a number line :ℝ  { }1 1 0:  ( )< ( )sD x r s x r s= ∈ < =ℝ  

1 0( ( ), ( ))r s r s  and { }2 0 2 0 2:  ( )< ( ) ( ( ), ( )),sD x r s x r s r s r s= ∈ < =ℝ  where ( ),mr s  

[0, ]s T∈  ( 0T >  is fixed), 0,1,2m=  are the given functions. Assume that 

1 0 2( )< ( ) ( ),  [0, ]r s r s r s s T< ∈  and the functions ( ),  0,1,2mr s m=  belong to the 

Hölder class 
1

2 ([0, ]),  0 1.H T
+α

< α <  Let  
2

( )
2

1
: ( , ) ( , )

2
i

s i i

d d
L b s x a s x

dx dx
= +  

be the generating differential operator of some inhomogeneous diffusion process 
given on ,  1,2.isD i =  Assume that the coefficients ( , )ia s x  and ( , )ib s x of the 

operator ( )i
sL  are defined in the domain ( , ) [0, ]s x T∈ ×ℝ and have the following 

properties:  
1) there exist constants b  and B  such that 0 ( , )ib b s x B< ≤ ≤  for all 

( , ) [0, ] ;s x T∈ ×ℝ  

2) function ( , )ia s x  is bounded on [0, ] ;T ×ℝ  

3) for all 1 1, [0, ],  ,s s T x x∈ ∈ℝ the next inequalities hold: 

2
1 1 1 1

2
1 1 1 1

| ( , ) ( , ) | (| | | | ),

| ( , ) ( , ) | (| | | | ),

i i

i i

a s x a s x c s s x x

b s x b s x c s s x x

α
α

α
α

− ≤ − + −

− ≤ − + −
 

where cand α  are positive constants, 0 1< α < . 
These properties ensures the existence of the fundamental solution of the parabolic 

operator ( ) .i
sL

s

∂ +
∂

 

Consider the problem of existence of the two-parameter Feller semigroup 
,  0 ,stT s t T≤ ≤ ≤  associated with a Markov process on 1 2[ ( ), ( )]r s r s  such that its 
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parts in 1sD  and 2sD  coincide with the diffusion processes given there by (1)
sL  and 

(2)
sL  respectively and its continuations after the diffusion particle reaches the 

boundaries of these domains are determined by the corresponding boundary 
conditions and the conjugation condition of Feller-Wentzell [1, 2] additionally 
given at points ( ),  1,2,ir s i =  and 0 ( ).x r s=  These conditions can be written in the 
form: 

( ( ))
0,  1,2,st iT r s

i
x

∂ ϕ = =
∂

 

1 2

0 0
1 2

0

( ( ) 0) ( ( ) 0)
( ) ( )

( ( ( )) ( )) ( , ) 0,  0 ,  1,2,
s s

st st

st st

D D

T r s T r s
q s q s

x x

T r s T y s dy s t T i
∪

∂ ϕ − ∂ ϕ +− +
∂ ∂

+ ϕ − ϕ µ = ≤ < ≤ =
 

where  
a) 1 2([0, ]),  ( ) 0,  ( ) ( ) 0,  [0, ],  1,2;i iq C T q s q s q s s T i∈ ≥ + > ∈ =  

b) ( , )sµ ⋅  is the nonnegative measure on 1 2s sD D∪  such that for any 0δ >  
the integrals 

0

\

| ( ) | ( , ),  ( , ),  1,2
js js jsD D D

y r s s dy s dy j
δ δ

− µ µ =   

{ }( )0:  | ( ) |js jsD y D y r sδ = ∈ − < δ  are continuous on [0, ]T  as functions of 

variable .s  
The problem formulated in the described way is also called the problem of 

pasting together two diffusion processes on a line or the problem of construction of 
the diffusion process in medium with membranes [3]. We use the analytic method 
to solve this problem. With such an approach the question on existence of the 
required semigroup in fact is being reduced to the investigation of the 
corresponding nonlocal initial-boundary value problem of Wentzell for a linear 
parabolic equation of the second order with discontinuous coefficients. The 
classical solvability of this problem is established by the boundary integral 
equations method with the use of the ordinary simple-layer potential. 
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Convolutional neural networks (CNN) have consistently shown more 
robustness to noise and background contamination than traditional neural networks 
(NN). For speech recognition, CNN apply their convolution filters across 
frequency, which helps to remove cross-spectral distortions and, to some extent, 
speaker-level variability stemming from vocal tract length differences. Convolution 
across time has not been considered with much enthusiasm within the speech 
technology community. This work presents a new approach to speech recognition, 
based on the specific coding of time characteristics and frequency characteristics of 
speech. Our idea assumes creating patterns for sounds in the form of RGB images. 

 
Convolutional Neural Networks 

 
Convolutional neural network (CNN) is a feed-forward artificial neural network 

in which the organization of neurons is similar to the animal visual cortex [1]. In 
order to recognize the shape of an object, the local arrangement of pixels is 
important. CNN starts with recognition of smaller local patterns on the image and 
concatenate them into more complex shapes. CNN was proved to be efficient 
especially in object recognition on an image. CNNs might be an effective solution 
to the speech recognition problem. 

CNN explicitly assumes the input is an image and reflects it onto its 
architecture. Therefore, in my method it is necessary to encode sounds using 
images. CNN usually contains Convolutional layer, Pooling layer and Fully-
connected layer. Convolutional layers and Pooling layers are stacked on each other, 
fully-connected layers at the top of the network outputs the class probabilities. 
 
Convolutional Layer 
 

Convolutional layer consists of neurons connected to a small region of pixels 
(also called the receptive field) of previous layer. The neurons in same feature map 
share the same weights [2]. Convolutional layer (CL) contains a set of learnable 
filters. One filter activates when a specific shape or blob of colour occurs within a 
local area [2]. Each CL has multiple filters F. Filter fi ∈ F is a set of learnable 
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weights corresponding to the neurons in previous layer. Filter is small spatially 
(along width and height) and extends along the full depth c of the previous layer. 
Filter’s size is denoted by (fw, fh). Therefore one filter adds rw x rh x c parameters, 
other weights are not considered. CL has a depth D if it recognizes D various 
features in the image using D various learnable filters f1, ..., fd. Thus, CL contains rw 
x rh x c x d learnable weights. Every neuron in CL uses weights of exactly one CL’s 
filter, many neurons use the same weights. 
The neurons in CL are segmented into feature maps by the filter they are using. 
Neurons belonging to feature map fmi share the same weight matrix of filter fi. CL 
forms D feature maps. Usual filter sizes are 3x3, 5x5 or less frequently 7x7. 
 
Deep Autoencoder 
 
Autoencoder is a feed-forward neural network where expected output is equal to 
the input of the network – its goal is to reconstruct its own inputs. Therefore, 
autoencoders are belonging to the group of unsupervised learning models [2]. 
Usually autoencoder consists of an input layer l0, one or many hidden layers 
l1,...,lk−1 and output layer lk.  

The encoder can be used for compression. Unlike Principal Component 
Analysis (PCA) analysis restricted to linear mapping, the encoder represents non-
linear richer underlying structures of the data [3]. The activations of the lc layer can 
be further used for classification. Fully-connected layers are appended with the size 
of the last corresponding to the number of labels. Usual learning algorithms are 
used. 
 
Time Frequency Convolution 
 

Traditional CNNs for speech recognition usually apply the convolution 
operation across frequency, providing the network with immunity to small spectral 
shifts, such as those introduced by speaker-specific vocal tract length differences. 
In cases such as reverberation, where delayed versions of reflection introduce 
temporal artifacts, convolution across time can be useful. Figure 1 shows block 
diagram of a network using two separate convolution layers, one operating across 
time, and the other operating across frequency.  

To encode the sounds using the RGB image, the MFCC coefficients [4,5,6] for 
the R component were applied, the time characteristic was used for the G 
component, and the signal source was used for the B component. Of course, in 
order to create a color image, it was necessary to scale the RGB components to one 
size. It was assumed that individual sounds will be coded using images with a size 
of 120 x 120 pixels. The time characteristics for the word "seven" are shown in 
Figure 2. Examples of characteristics for the word "seven" are shown in Figures 3, 
4 and 5.  
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Fig. 1. Block diagram showing time-frequency convolution neural nets [7] 

 
 

 
Fig. 2. The time characteristics for the word "seven" 

 

 
Fig. 3. Map of MFCC coefficients for the word "seven" 

 

 
Fig. 4. The time 2D characteristics for the word "seven" 
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Fig. 5. Signal spectrum for the word "seven" 

 
For such defined RGB components, it was possible to create an RGB image, 

which is a visual pattern for sound. It was assumed that each syllable should be 
coded separately. Of course, it is possible to encode combined phonemes that do 
not always form a syllable, but are, for example, combined with silence. In the 
example recording for the word "seven", the algorithm generated the division "se" - 
"ven". An example of the coded syllable "se" and "ven" is shown in Figure 6.  

 

  
Fig. 6. An example of the coded syllable "se" (left) and "ven" (right) 

 
Neural Network Structure 
 

The proposed convolutional neural network consisted of 15 layers. The first 
convolutional layer contained 64 filters with dimensions of 9 x 9. Three 
convolutional layers are responsible for coding information, transferred into two 
fully connected layers. The network diagram is shown in Fig. 7. 
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Fig. 7. Assumed network structure 

 
Research 
 

The studies included two important issues. The first concerned the correctness 
of the work of the algorithm, realizing the division of speech into syllables. A 
method was applied that takes into account signal energy and signal frequency for 
the stationary fragment under consideration. The division into individual syllables 
was made for the experimentally selected threshold values. For each isolated 
syllable (which could also include silence), the image was created as a graphic 
pattern. Each syllable pattern has been saved as an image in a directory name 
corresponding to the designated syllable. The experiment was carried out for 
insulated words and continuous speech. A different number of words have been 
adopted for continuous speech. Table 1 shows the results of an experiment 
concerning the division into syllables.  
 

Table 1. Results of the division of words into syllables 

Number of 
experiment 

Type of experiment 
Number of 

words (1) and 
sentences (2-4) 

Correct division 
[%] 

1 separate words 70 98 

2 
continuous speech 
(from 3 to 7 words) 

40 89 

3 
continuous speech 

(from 6 to 12 words) 
40 82 

4 
continuous speech 

(from 10 to 20 words) 
40 69 
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The second type of research concerned the evaluation of the effectiveness of 
speech recognition for isolated words and for continuous speech. The recorded data 
was divided into training data and test data, in a ratio of 70 to 30. The learning time 
of the neural network and the number of epochs required for correct learning were 
also examined. The results of the main experiment are shown in Table 2. 
 

Table 2. Speech recognition results 

Number of 
experiment 

Type of experiment 
Learning time 

[s] 

Number of epochs 
[%] 

Word error rate 
[%] 

1 separate words 1920 125 4.2 

2 
continuous speech 
(from 3 to 7 words) 

2658 317 6.7 

3 
continuous speech 

(from 6 to 12 words) 
8280 428 9.3 

4 
continuous speech 

(from 10 to 20 words) 
10065 641 11.8 

 
 
Conclusion and feature works 

 
Research has shown that effective speech recognition is possible for isolated 

words. Appropriate speech coding by means of images allows use in convolutional 
neural networks. The proposed method of speech coding is an interesting 
alternative to the classic approach. It has been noticed that when speaking slowly, 
the division into syllables is quite easy. Further work will focus on increasing the 
efficiency of word recognition through a more accurate division into syllables. It 
should also be further developed algorithm MFCC, as he introduced the biggest 
mistakes in the visual coding of speech. 
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Mathematical modeling of the heat transfer in a composite sphere under 
mathematical and physical boundary conditions using the fractional differential 
calculus was the subject of the paper [1]. The purpose of this consideration is to 
investigate the effect of time-fractional order of Caputo derivatives occurring in the 
heat conduction equation on the temperature distribution in a composite consisting 
of inner solid cylinder and a cylindrical layer. The time-fractional heat transfer is 
governed by the following heat conduction equation [2] 

 
1 1

, 1,2
i

i

i i

i

T T
r i

r r r a t

α

α
∂ ∂∂   = = ∂ ∂ ∂ 

  (1) 

where ia  is the thermal diffusivity and iα  denotes the fractional order of the left-
sided Caputo derivative with respect to time t . 

We assume the finite temperature at the symmetry axis of the solid cylinder, the 
continuity conditions at the interface, the Robin boundary condition on the outer 
surface and the initial condition in the following form 

 ( )0,T t < ∞   (2) 

 ( ) ( )1 1 2 1, ,T r t T r t=   (3) 

 ( ) ( )1 2
1 1 2 1, ,

T T
r t r t

r r
λ λ∂ ∂=

∂ ∂
  (4) 

 ( ) ( ) ( )( )2
2 2, ,

T
b t a T t T b t

r
λ ∞ ∞

∂ = −
∂

  (5) 

 ( ) ( ),0 iT r F r=   (6) 
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where iλ  is the thermal conductivity, T∞  is the ambient temperature and a∞  is the 

outer heat transfer coefficient. 

To obtain the time-fractional equation with a constant coefficients, we introduce 

new functions ( ),iU r t  given in the form 

 ( ) ( ) ( ), , , 1,2i iU r t T r t T t i∞= − =   (7) 

An analytical solution of the time-fractional heat conduction problem for the 
functions ( ),iU r t  under homogeneous conditions was determined by using the 

method of variables separation. We find the solution to the problem for the 
functions ( ),iU r t  in the form of a series 

 ( ) ( ) ( ),
1

, , 1,2i k i k
k

U r t t r i
∞

=

= Λ Φ =   (7) 

The functions ( ),i k rΦ  for 1,2,...k =  are obtained as a solution of a corresponding 

eigenvalue problem and the function ( )k tΛ  is a solution of the appropriate 

fractional initial problem. 
 The effect of the order of the time-fractional derivative on the temperature 
distribution in the cylinder was investigated numerically. 
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Let � = ��, �� be an interval of the real line ℝ (�, � ∈ ℝ, � < �) and let ℝ� denote 
the set of all functions �: � → ℝ. For a given function ℎ: � × ℝ → ℝ, the mapping 
�: ℝ� → ℝ� defined by 

�(�)(�) = ℎ(�, �(�)),     � ∈ ℝ� ,    � ∈ �, 

is called a composition (Nemytskij or superposition) operator of a generator ℎ.  

    In 1982 J. Matkowski proved that if H maps a Banach space 

 !"#�0,1�, ‖∙‖'()�*,��+ of Lipschitzian functions � ∈ ℝ�*,�� with the classical 

!"#�0,1�-norm into itself and is globally Lipschitzian, i.e., if for some constant 
, ≥ 0, 

‖�(��) − �(�	)‖'()�*,�� ≤ ,‖�� − �	‖'()�*,��, ��, �	 ∈  !"#�0,1�, 

 then 

ℎ(�, 0) =∝ (�)0 + 2(�),     � ∈ �0,1�, 0 ∈ ℝ,       

for some functions 3, 2 ∈ !"#�0,1�, i.e., h is an affine function with respect to the 
second variable.  Analogous results for representations of the generators of globally 
Lipschitzian operators have been proved for some other function spaces.  Later, it 
was observed that these results remain true if the Lipschitz norm-continuity of H is 
replaced by its uniform continuity. 
    In 2011, J. Matkowski  proved, under very general assumptions, that for the 
function spaces including the Hölder spaces as a special case, the uniform 
continuity of the operator H can be replaced by a much weaker condition of the 
uniform boundedness (which is weaker than norm-boundedness). 
 

   The purpose of this paper is to show that if � maps the space 456��, �� of �-
times differentiable functions with the �-derivative satisfying a generalized Hölder 
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condition into 457��, ��, where � ≥ 8, and � is uniformly bounded, then the 
Matkowski representation holds. 
 

Definition.  Let 9 and :  be two metric spaces. We say that a mapping ;: 9 → : 
is uniformly bounded  if, for any < > 0, there exists a real number >(<) such that 
for any nonempty set ? ⊂  9, we have 

A"�B? ≤ < ⇒ A"�B;(?) ≤ >(<). 

The main result of this paper reads as follows:  
 
Theorem. Let �, � ∈ ℝ, �, 8 ∈ ℕ, � < �, � ≥ 8, be fixed and let a function 

ℎ: ��, �� × ℝ → ℝ  be such that for any � ∈ ��, �� the function ℎ(�,∙): ℝ → ℝ  is r-
times differentiable and its r-th derivatives satisfy the Lipschitz condition on ℝ. If 
the composition operator H of the generator h maps the space 456��, �� into 
457��, ��, � ≥ 8, and is uniformly bounded, then there exist ∝∈ 457��, �� and 
2 ∈ 457��, �� such that 

ℎ(�, 0) =∝ (�)0 + 2(�),     � ∈ ��, ��, 0 ∈ ℝ.     
and 

�(�)(�) =∝ (�)�(�) + 2(�),     � ∈ 45��, ��,     (� ∈ ��, ��). 
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The demand and supply analysis on the university graduates labor market has 
been subjected to some tendencies for some time. It turns out that, currently, the 
graduates of technical faculties and exact sciences find the job the fastest. 
However, the condition is to have appropriate soft competences, such as creativity, 
self-management in time, communicative skills or the ability to work in a team. 
The employers reported a deficit for employees with technical and exact education 
without indicating the field of study. It played a lesser role, because the attention 
was paid to competences in the form of knowledge of specialist software and the 
above-mentioned soft skills [1]. 

A certain challenge for the university is the need to match the skills and 
competences of students studying to the needs of the labor market. It turns out that 
adaptation of the educational offer through the creation of new fields of study is not 
a good trend, due to the rapid changes on the labor market. A good solution would 
be the introduction of specific content, to the existing fields of study and 
specializations, shaping the competencies that allow adapting the acquired 
knowledge to the conditions of the work undertaken. The weakness of the 
education and training market requires a better adaptation of the demand and 
supply of skills and competences of both, graduates undertaking work and training 
of people already employed, in order to raise their knowledge and skills. 
In Poland, there is an increase in supply for high qualifications. Graduates of 
higher education schools supply the labor market, often undertaking a job that is 
not necessarily consistent with the obtained education. The number of people 
employed in the services and trade sphere is growing. Employers increase the 
demand for skills at the highest level, taking into account the technological changes 
and economic trends taking place on the market [2]. 
     Therefore, it is necessary to recognize the real situation of university graduates 
in the labor market. The graduate's transition stage to the labor market has been 
controlled by universities since 2011. The obligation to monitor the professional 
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life of graduates by universities was introduced by the Ministry of Science and 
Higher Education in order to adapt fields of study to the needs of the labor market 
[3]. 
    At the Czestochowa University of Technology reports from the survey 
conducted among graduates, have been developed. The surveys were anonymous, 
carried out three times - after the end of education, then after three and five years 
from the date of graduation. Based on surveys conducted in 2012, 2013, 2014 and 
2015, it was found that almost half of the graduates undertake work incompatible 
with their education, about 60% of respondents admitted that they had a job at the 
time of graduation. It was important to assess the level of own competences in 
relation to the competencies required by the employer. The level of competence in 
analytical and logical thinking was 15% at the higher level, 65% at the appropriate 
level; the ability to work effectively in a group - 18% at a higher level, 61% of 
indications at the appropriate level; ability to organize work independently - 19% 
higher competences, 59% appropriate ones [4]. 
The employers' forecasts regarding the employment of graduates by educational 
areas and voivodships by 2020 for the silesian voivodeship  are presented as 
follows: 
- employment growth in the field of exact sciences at 40% ( 34% on average in the 
country) 
- 77% in technical science (71% on average in the country). 
For comparison, on average in the country in the area of humanities it is planned to 
increase employment by 4%, 28% in the area of social sciences, 16% medical and 
health sciences, 5% natural sciences and 1% in the field of art [1]. 
    On the basis of the mentioned studies, it can be concluded that graduation from 
higher education still increases the chances of employment. However, due to the 
excess supply of graduates over the demand on the labor market, graduates must 
demonstrate greater competitiveness over the people with lower education. 
Employers can offer worse working conditions and pay and positions that do not 
require higher education [3]. 

Universities, for their part, strive for the highest quality of education in order 
provide to graduates a range of competences guaranteeing success on the labor 
market. 
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Investment quality indicator is defined in papers [1]. Its properties are presented 
in paper [2]. It was applied for the research of investment in capital enterprises on 
annual or multiannual scale. Based on some properties of this indicator the 
potential client, by comparison of indicators from many enterprises, had a chance 
to make a choice of the enterprise which suits him the best. This article has the 
main aim to present the basic methods of multidimensional comparison analysis for 
research about efficiency of managing and management enterprises from certain 
branch. Quality indicator analysis also allows for choosing adequate management 
and planning strategy of chosen enterprise development. Basic and undefined 
concepts of comparison analysis are concepts of object variable. In this case the 
enterprise is the object and investment quality indicators are variables. Let suppose 
that we investigate the m enterprise, which is beginning investments for n years. 
The annual investment quality indicator for enterprise r (r = 1, …, m) in year k is 
specified as 
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where 
ark – rate of profit for enterprise r in year k 
irk – inflation in year k. 

Now the variable values (investment quality indicators) we can sign up in the 
form of so called observation matrix I 
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In case when analysis of enterprises from different branches is made, it is 
necessary to perform the appropriate regulation of observation matrix. There is 
many manners for this regulation. The most common way is standardization. It rest 
on replacement Irk variable by variable 
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where Sk is a standard deviation of variable k. 
But the easiest method for regulation of observation matrix is replacement Irk 

variable by variable 
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where 
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This dimension in comparison analysis is called dispersion or interval variable 
k. The standard deviation the same as interval variable k might be, in some cases, 
the illustration of profitability in compared enterprises. For example high 
differentiation tk also means high differentiation of enterprises profits. However, 
these parameters do not give the criteria for choosing enterprises in view of 
probability. 

This paper presents the comparison analysis of enterprises (objects) from the 
same branch.  So the regulation of observation matrix is not necessary. 

One of basic concepts, allowing for object comparison in respect of investigated 
phenomenon, is their ‘resemblance’, which measure is distance between them. 
Most commonly used formulas for distance between object i and object j are 

a) Euclidean distance 
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b) New York distance 
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By calculating distances for all pairs of objects we receive the distance matrix 
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From term dij immediately results dii = 0 and D = DT. Distance between objects 
is the measure of their differentiation, so if the distance between objects – 
enterprises is smaller than their profits are more similar. 

Other basic problem, which is solving by methods of comparison analysis, is 
linear object organization. It rest on designation the bijection f, which for each 

object from certain objects set ( )A A m=  assigns natural number from set 
{1,2,…,m} so as f(Oi) > f(Oj). Than it means that object Oi is characterized by 
higher level of phenomenon than object Oj. One of methods of linear organization 
is the method of pattern development (standard object). It consists of three stages. 
In first stage, it is necessary to determine standard object Ow. 

 1 2[ , ,..., ]w w w wmO I I I=  (11) 

where 

 1 2max( , ,..., ),     1,2,...,wi i i miI I I I i n= =  (12) 

Assuming that each variable I jk is stimulant, in the case when I jk is destimulant, 
than in above formulas should be adopted minimum. Besides, in general case, it is 
necessary to consider the standardized observation matrix. In second stage, there 
are determining distances between each object and standard object by formula 
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And then (in the third stage) for each object there are determining so called 
development measures 
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where 
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however 

 1 2min( , ,..., ),       1,2,...,i i miw j
I I I I i n= =  (16) 

If I jk is destimulant then in above formulas it is necessary to adopt the 
maximum instead minimum. The objects are organized by development measures. 
It is easy to notice that if the value of development measure is higher, the level of 
phenomenon is higher too. 

The above methods might be also used for profits comparison in m 
enterprises in monthly cycles during one year period. The investment quality 
indicator, which in this case might be regarding as profitability indicator for 
enterprise r (r = 1,2,…,m) in month k, would have identical form as annual 
investment quality indicator, i.e. 
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where: 
ark – rate of profit for enterprise r in month k of given year 
irk – inflation in month k of given year. 
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Thermal processes occurring in the solid bodies are, as a rule, described by the well 
known Fourier equation (or the system of  these equations) supplemented by the 
appropriate boundary and initial conditions. Such a mathematical model is 
sufficiently exact to describe the heat transfer processes in the macro scale for the 
typical materials. It turned out, that the energy equation based on the Fourier law 
has the limitations and it should not be used in the case of the microscale heat 
transfer and also in the case of materials with a special inner structure (e.g. 
biological tissue). The better approximation of the real thermal processes assure the 
modifications of the energy equation, in particular the models in which the so-
called lag times are introduced. The article presented is devoted to the numerical 
aspects of solving this type of equations (in the scope of the microscale heat 
transfer). The results published  by the other authors can be found in the references 
posted in the works cited below. 
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Abstract. Linear logic has become one of the perspective logical systems available 
for computer science. It enables to express causality, dynamics of processes, 
internal and external non-determinism. Each of linear formula can be considered as 
an action or as a resource. We show on a simple example how Petri nets can be 
transform to linear formulas. 
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1. Introduction 

 
The logical systems play an important role in development of modern software 

systems. In present, the mostly used logics are propositional and predicate logic, 
but in the recent years also some kinds of modal logics have found their 
applications in software engineering. In this paper, we concern on the one of the 
non-classical logics, the linear logic, that seems to be useful for applications in 
computer science.  
Linear logic was introduced by J. Y. Girard in 1987 [4]. The first aim of the author 
was to extend the classical propositional and predicate logic with new logical 
connectives and to introduce dynamics into logic. During the last years, the linear 
logic has become a new perspective logical system that can work with actions and 
resources [5]. Because it considers as the resources time and space (memory), its 
usefulness grows especially in computer science. The another advantage of linear 
logic is its possible fragmentation according to solved problem and its intuitionistic 
version that is a subject of Curry-Howard correspondence [15]. Linear logic can be 
extended also by special operators from some of modal logics, e.g. standard modal 
logic, epistemic logic, what increases its expressive power [7,11].  
The aim of this paper is to advertise several interesting features of linear logic and 
its possible applications in computing science. For simplicity, we consider only 
propositional linear logic in this paper. The second section contains a short 
introduction to linear logic with special emphasis on its logical connectives, its 
modal operators and on its static and dynamic nature. In the third section we 
discuss our view of the fragments of linear logic that can serve for different 
purposes in various areas of computer science. The fourth section contains a short 
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description of possible application of linear logic in specifying a real program 
system.  

2. Basic Concepts of Linear Logic 
    
   In this section we introduce the basic notions of linear logic. Linear formulas are 
denoted by capital letters E, ?, F, … Each formula expresses an action or a resource 
[6]. From the elementary formulas we can construct more complex ones using 
logical connectives. We shortly characterize them in the following text. 
The most interesting logical connective of linear logic is linear implication. A 
formula 

E�� ? 

introduces dynamics into linear logic. If we consider E, ? as actions, or processes, 
then this implication expresses sequentiality of these actions, a process ? follows 
after a process E ends. We can say that an action E is a cause of an action ?. In 
case, where E, ? are resources, it means that a resource E is consumed after 
implication. This property of linear implication enables to describe sequential 
processes and/or consumption of resources, that means, a process/resource E is no 
more valid after linear implication. 

Linear logic has two conjunctions, multiplicative one, ⊗,  and additive one, &. 
The multiplicative conjunction 

E ⊗ ? 
expresses that the both actions E, ? are executed simultaneously. That means, 
linear logic enables to express parallelism of processes. In case E, ? are resources, 
it expresses that both resources are available at once. Therefore the number of 
assumptions is significant in linear logic. Additive conjunction  

E & ? 
expresses that  one of the actions can be executed and we can predict from an 
environment which one. In case of resources, we have one of them and we can 
deduce which one. Therefore we can say that by additive conjuction we can 
describe external non-determinism. 

Similarly, linear logic has two disjunctions, multiplicative one, � and additive 
one, ⊕. The formula  

E � ? 
means: is E is not executed then ? is executed and vice versa. It works similarly as 
the instruction xor. The formula 

E ⊕ ? 
expresses that only one of these formulas E, ? can be executed but we do not 
predict which one. Therefore we can say that additive disjunction enables to 
specify internal non-determinism. 
 

Linear negation is an unary logical connective and a formula 
E� 
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expresses that an action is done or a resource is consumed. Linear negation is 
involutive, i.e. EKK ≡ E. 

Instead of traditional logical systems, where are two truth values, true and false, 
linear logic has four neutral elements, for each logical operation of conjuction and 
disjunction.  

Linear logic has two modal operators that indicate unexhaustive resources, or 
repeated execution of actions. A formula ! E denotes that a resource is available 
infinitely, or that an action is iteratively executed. The second modal operator 
expresses a potential unexhaustibility of a resource or infinitely executed action. 
For instance, a classical implication E => ? can be transformed to linear 
implication ! E �� ? . The second modal operator is ?, it expresses a potentionally 
unexhaustive resource. These modal operators are dual.  

The semantics of linear logic was defined by Girard  in terms of phase spaces. 
The new approaches use as models SMCC categories [1, 13,14] or *-categories [3]. 
The main principle in defining semantics of linear logic is that a formula can be 
represented as a type. The deduction calculus of linear logic is defined as a sequent 
calculus. A sequent has a form 

Γ ⊢ Q,   
 
where Γ is a set of linear formulas called assumptions and Q is a set of linear 
formulas that can be infered from the assumptions. The main principle is that a 
number of assumption is significant, therefore the known deduction rules of 
weakening and contractions cannot be used. The whole sequent calculus is in [9]. 

 
3. Possibilities of Linear Logic and their Fragments   

 
Linear logic can be used as a tool for specifying  various kinds of program systems. 
Frequently, we need to use only a part of this large logical apparatus. In such cases 
we can consider some fragments of linear logic [8]. 
When we consider only multiplicative conjunction and disjunctions, we say, that 
we use multiplicative fragment of linear logic. This fragment is sometimes called 
intensional fragment, because the semantics of the formulas is defined as sense or 
non-sense. 

When we consider additive conjunctions and disjunctions, we use additive 
fragment of linear logic, or in other words, extensional fragment, where formulas 
have a meaning true or false.  

The fragment using only multiplicative connectives is a multiplicative fragment 
and it corresponds with product types in linear type theory. The fragment, which 
consider only additive ones is an additive fragment and it corresponds with sum 
(coproduct) types in linear type theory.  

The logical connectives of linear implication and linear negation are neutral, i.e. 
we can use them in any fragment of linear logic mentioned above.  
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For handling resources, we need another properties of logical connectives in linear 
logic called polarity [10]. We say that the fragment of linear logic is positive, if the 
formulas are constructed only by using the following connectives with positive 
polarity: ⊗, ⊕, ! . The fragment of linear logic is negative, if the formulas are 
constructed only by using connectives with negative polarity: &,�, ?. The polarity 
can be turned over by negation ( )K. That means, if a formula is positive, its 
negation is negative and vice versa. Linear implication as the whole is neutral, but 
after it, the polarity of implication premise is changed.  

The last possible fragment of linear logic is intuitionistic linear logic [2], that 
uses all linear connectives excluding multiplicative disjunction �.  The main 
difference is in deduction calculus, where the sequents can have only one formula 
on the right-hand side of a sequents. Certainly, the intuitionistic fragment does not 
use absurdum proof. But the advantage of intuitionistic fragment of linear logic is 
that it corresponds with typed R −calculus with linear terms.  
                                   
4. Description and Modelling of Systems using Linear Logic 

 
   Linear logic is a useful logical system for describing and verifying real program 
systems. In this section we demonstrate its possibilities and advantages for 
modelling synchronization problem [12]. 
The known formal tool for modeling the synchronization problem of concurrent 
systems are Petri nets (PN). A PN can be illustrated as a graph that has two types of 
nodes: places and transitions. The places represent possible states of a system and 
the transitions represent changes of states, i.e. events. The places can contain 
special marks called tokens. A transition is enabled, i.e. it can be fired, if there is a 
required number of tokens in places on input arcs.  When a transition is fired, it 
produces tokens in all places on the output arcs. Generally, execution of a PN is 
nondeterministic: when more than one transition is enabled, any of them can be 
fired. Any distribution of tokens over places represents a configuration of a given 
PN called marking. For any place p of a PN, its marking is a function  B: S →  ℕ* 
returning a number of tokens in p. ℕ* denotes the set of natural numbers with zero. 
A marking of a PN is defined as a tuple 
         
                            B = (B(#� ), … , B(#6))     
 
of markings of all places in a PN. When a transition < is fired, a token from each 
input place is deleted and to each output place is added a token. 
A behavior of a PN can be observed as a sequence of markings reached during 
execution of a  PN. We define the transformations of some significant patterns of 
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PNs, to corresponding sequents of linear formulas. A place # of a PN containing 
one token, i.e. with the marking B(#) =  1, we denote by the elementary 
proposition # of linear logic. Marking expresses that a place #� contains one token 
and a place #	 contains two tokens, can be denoted using multiplicative 
conjunction: 
                                                   #� ⊗ #	 ⊗ #	.      
    
For describing a transition of PN by a linear formula, we use linear implication 
�� , where the premise is a marking making a transition < to be enabled  and the 
conclusion is a marking after firing of <. Linear implication expresses change of 
states caused by firing a transition together with the consumed resources (tokens) 
on the left-hand side and the produced resources (tokens) on the right-hand side of 
implication [4]. For instance, if < is a transition that can be fired when the places #� 
and #	 both have one token and after firing < the place #
 obtains a token, then this 
transition can be denoted by the following linear implication: 
 
  < ≡  #� ⊗ #	 �� #
.   
     
A behavior of a PN we describe by the sequents of linear logic in the form: 
B, T ├ BV, 
where 

• B is a marking before firing a transition, 
• T is a list of enabled transitions expressed by linear implications 

defined above, and 
• BV is a marking after firing a transition. 

Such sequents express that from a marking B by firing a transition from T the 
marking B′ is produced.  
Now we consider the PN in Fig. 1. It models the well-known problem of mutual 
exclusion (mutex). The principle of mutex is that only one of the processes can be 
executed in one moment. Let the initial marking be B* =  (1,0,1,0,1). After the 
transformation of this PN to linear seqeunt, we can describe the behavior of mutex 
as follows: 
 

#�, #
, #X,  (#
 ⊗  #X) �� #Y+ ⊕ ((#� ⊗  #
) �� #	)├(#Y ⊗ #�)&(#	 ⊗  #X), 
 
where on the left-hand side we use internal nondeterminism, i.e. additive 
disjunction ⊕ between transitions <	 and <�. On the right-hand side of this sequent 
we use additive conjunction & between tokens because they depend on which of 
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the transitions <	 and <� was actually fired. Provability of this sequent ensures that 
we have a solution of mutual exclusion. 
 

 

Fig. 1 Petri net for mutual exclusion 

 
5. Conclusion 

 
In this paper, we have tried to present a short overview to one perspective logical 
system, linear logic. It enables to express dynamics, causality, non-determinism, 
and parallelism. It can work with resources as are time and space. Therefore this 
system is useful in computer science for describing real program systems in 
provable manner.  
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Many theoretical and experimental studies of transport phenomena testify that 
in solids with complex internal structure the classical Fourier law and Fick law are 
no longer accurate enough. This leads to formulation of nonclassical theories in 
which the standard heat conduction and diffusion equations are replaced by more 
general equations. Each generalization of the heat conduction equation or the 
diffusion equation leads to the corresponding generalization of the theory of 
thermal or diffusive stresses. The theories of thermal and diffusive stresses based 
on fractional heat conduction and diffusion equations [1] are discussed. 
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A typical sandwich panel has a three-layered structure. The rigid faces with  
a relatively high modulus of elasticity are kept apart by the much lighter core 
which has a shear stiffness sufficient to carry most of shear forces [1]. The 
composite structural element has significant capacity to carry out forces that are 
perpendicular to their faces. However, more and more often there is a necessity to 
apply to the sandwich panels a load eccentrically (Fig. 1). This situation could take 
place in the constructions which are created by using sandwich panels assembled in 
horizontal position (e.g. building envelopes – walls). An eccentricity of load 
application induces torsion of the sandwich element (Fig. 1). 

 
Fig. 1. The cross-section of horizontal sandwich panel with additional eccentric loading 

inducing torsion of the element [2]. 

The aim of this paper is to present the numerical simulation of the influence of 
the boundary conditions on the shear stresses in sandwich panels subjected to 
torsion. The 3D numerical models created in SIMULIA Abaqus are considered 
very carefully and the solutions are compared with the results obtained using the 
St. Venant’s torsion theory [4] and Vlasov torsion theory [3]. 

The simplified 1D model used to analytical calculations of internal stresses and 
strains (using formulas presented in [3] and [4]) is shown in Fig. 2b. It is one of the 
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basic static systems of beams subjected to torsion. At the both ends it has a fork 
support, it means – the angle of rotation of the cross-section is blocked, but there is 
still freedom of warping (deplanation) of the cross-section [2]. The beam is 
subjected to a single torsional moment M. When it comes to the 3D, the numerical 
models (Fig. 2a) are considered for several kinds of boundary conditions. The first 
of them was created as the most similar to 1D model. Then the support conditions 
were changed. The single torsional moment M in 3D models was defined by 
application of the uniform, tangential to the facings load, distributed over the 
middle band of both facings (the directions of the loads on the both facings are 
opposite). 

a) 

 

 

 

 

 

b) 

Fig. 2. Models of sandwich panel subjected to torsion: a) 3D sandwich structure, b) static 
scheme of the 1D element. 

The thickness of the facings is equal to t = 0.5 mm. The parameters of the 
material of facings are: modulus of elasticity EF = 210 GPa, Poisson’s ratio 
νF = 0.3. The thickness of the core is equal to d =  99.0 mm. Shear modulus of the 
core is GC = 3.5 GPa. 

Comparing results obtained using 3D numerical models with variable support 
conditions, some discrepancies can be seen. The internal stresses and strains in 
sandwich element reach divergent values. Boundary conditions in 3D numerical 
simulations are of great importance.  
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Young measures appear in the calculus of variations while considering 
nonconvex optimization problems. We look for the infimum of the bounded from 
below functional of the form 

 Z([) = \ > �, [(�), ∇[(�)+^ A�, (1) 

where: 
- Ω is an open, bounded subset of ℝ6 with sufficiently smooth boundary; 
- [ is an element of a suitable (usually Sobolev) space ̀  of functions on 

Ω with values in ℝa; 
- >: Ω × ℝ6 × ℝa6 → ℝ ∪ c+∞e is assumed to satisfy suitable 

regularity and growth conditions. 
 

This problem has also physical interpretation, used for example in nonlinear 
elasticity. In this case the terms in equation (1) are looked at as: 

- Ω is elastic body under consideration; 
- [ is its displacement; 
- > is the density of the internal energy 
- Z is the energy functional. 

 
It turns out that when f does not satisfy certain convexity conditions, the weak∗ 
convergence of  the minimizing sequence ([6) to the function [* does not 

guarantee, in general, that the weak∗ limit of the sequence k> �, [6(�), ∇[6(�)+l 

is equal to k> �, [*(�), ∇[*(�)+l. This is caused by the lack of the convexity 

(more precisely: quasiconvexity – the notion introduced to take into consideration 
the principle of the material frame indifference in engineering applications) with 
respect to the third variable of the integrand f. The elements of the sequences 
minimizing the functional J are the functions of the highly oscillatory nature and 
considered functional, although bounded from below, does not attain its infimum. 
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In engineering we meet this situation, among others, when f is  the density of the 
internal energy of laminates or various types of alloys. 

Laurence Chisholm Young proved in [6] that the weak* limits of the sequences 
of the form mentioned above are in general families of probability measures, 
nowadays called the Young measures.  

The simplest form of a Young measure is a ‘homogeneous Young measure’. It is 
in fact a ‘one parameter family’, i.e. it does not depend on points of Ω. It serves  as 
a source of examples and in many real world cases, see for example [2] and [5].  

Young measures can be regarded as the elements of the Banach space of 
measures with total variation norm. In the talk we take this point of view and focus 
our attention on the homogeneous Young measures with densities. Presented result 
are generalizations of those published in [3] and [4]. First we introduce the notion 
of a (not necessarily homogeneous) Young measure. Next we show that the weak 
convergence of the sequences of the homogeneous Young measures is closely 
related with the weak (in the space of integrable functions) converges of their 
densities. Moreover, it turns out that the weak limit is also a homogeneous Young 
measure with density, which is not always the case. 
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Mathematical thinking, logical thinking, and creative thinking are very similar 
complex skills. Reasoning and mathematical activity for modeling, creating 
strategies for solving problems and argumentation are of great importance. 
Mathematical modeling is a reasoning and action that allows us to build  
a mathematical model corresponding to the situation presented in the task. It is also 
the right choice of mathematical tools and methods to solve real problems. 
Creating a problem solving strategy involves correct preparation of an action plan 
leading from the question to the answer. Arguing is the ability to combine a lot of 
information and formulate conclusions based on them. 
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In the figure 1 the investigated system is presented. The external load is realized 
by means of the loading heads with circular outline [1]. The system can be 
composed as two co-axial tubes or tube and rod. The presence of the piezoceramic 
element divides an internal rod into three sections. The stiffness of connection of 
those sections is being simulated with rotational springs. The continuity of 
transversal and longitudinal displacements as well as bending moments and 
deflection angles is satisfied by natural boundary conditions. Tomski’s load is 
created with the loading head of radius R which can move smoothly in the vertical 
direction. The radius R has a center in the point localized below the loaded end of 
the column on its undeformed axis through which passes the line of P force action 
(pole point). The radius of the receiving head is r and the distance between the end 
of the column and the contact point of both heads is l0. 

The phenomenon of local and global instability can be found when nonlinear 
systems are studied. The instability regions are defined during a comparative 
analysis on the bifurcation load of a geometrically nonlinear structure to a critical 
load of a linear one. Taking into account that a slender system keeps a rectilinear 
form of static equilibrium, one can find such a magnitude of external load at which 
the instability occurs. The magnitude of this load is called a bifurcation load for 
nonlinear systems and critical for linear ones. The local instability takes place when 
the bifurcation load of a nonlinear system is smaller than the critical load of a 
corresponding linear one. The global instability phenomenon is present when the 
bifurcation load of a nonlinear system is greater than the critical one of a 
corresponding linear structure. 

The use of the piezoceramic element leads to prestressing of the structure by 
means of the force generated by this rod after an appliance of the voltage. The 
prestressing (in relation to the sense of the electric field vector) allows one to 
achieve a control to the instability type. 
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Fig. 1. Investigated system 
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The Analytic Hierarchy Process (AHP) is the wide use methodology in 
multicriteria decision making analysis [1]. The problems of multicriteria decision 
making often occur in many fields of our activity because real decision problems 
usually entail any positive and negative consequences in other area. The idea of 
AHP methodology is to organize mulicriteria problem in hierarchy where 
alternatives are compared in view of one criterion and criteria are compared in 
view of overriding goal [2]. The order of alternatives in respect to one criterion is 
made by assigning priority weight to each of them, collected in priority vectors: 

 m = �m�, m	, … , m6� (1) 

Because of some psychological reasons the weights values are obtained by 
pairwise comparisons each alternative with  the others [3],[4]. 

The pairwise comparison is the main activity of decision maker (DM) in AHP 
by which a vector of priority weights are obtained. The priority vector is calculated 
from pairwise comparison matrix which consists of the DM judgments about 
priority ratios: 

 �(n = op
oq

 (2) 

However in AHP practice the DM compare the alternatives or criteria using the 
common language. This comparisons are converted to numbers which are collected 
in pairwise comparison matrix [2]. 

The numbers which are connected to the language expression form set called 
scale. There are various scales that are used in AHP [5]. The scale invented by AHP 
author – T. Saaty – consists of nine natural number from 1 to 9 and theirs 
reciprocals. That is because there is used nine language expressions for alternative 
comparison [6]. However some authors argue original idea because of too small 
amount of possible comparisons or because of its irregular interval between 
numbers [7],[8],[9],[10]. 

In response to drawbacks of the original scale the other scales was invented 
[7],[8],[9]. One of them is geometric scale [8]. In its original form it consists of 
natural power of number 2 and its reciprocals. The elements of this scale form the 
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geometric sequence with common ratio 2, so the ratios between its element, in 
contrast to original AHP scale, is fixed. Because the numbers in this scale are quite 
big in compare to Saaty scale, the idea of adopting smaller number as a common 
ratio arises. The geometric scale also can be easy extended to bigger amount of 
comparisons. 

Because of using many forms of geometric scale possibility the question about 
theirs actual impact on final results arise. In this paper I would like to present some 
investigation on this issue. I investigate various common ratio of geometric scale: 
(2)1/4,1.2, (1.5)1/2, (2)1/2, 1.5, 1.8,  2 with two different amount of numbers in scale: 
17 or 33. The 17 numbers is equal amount of original Saaty comparison numbers, 
and 33 arise as doubling comparison numbers amount. 

In fact, using any scale in AHP procedure entail errors occurrence in final 
priority vectors. However using any scale is unavoidable so it is important to use 
scale which lead to possibly small errors. Therefore we investigate the relationship 
between applying parameters of geometric scale and the amount of errors in 
priority vector. In this paper I would like to present this results and compare this 
results with this obtained for genuine Saaty scale. Because an important indicators 
of pairwise comparison matrices correctness in AHP are inconsistency indices 
([2],[3],[11],[12],[13]) I also present impact geometric scales with various 
parameters on matrix inconsistency and on correlation between inconsistency 
indices and errors in priority vectors. 

My investigation was based on Monte Carlo experiments. The framework of 
this simulation is similar to existing in literature simulation [13],[14]. In this 
experiments the “true” priority vector and “true” pairwise comparison matrix are 
generated. In the next step of experiment the pairwise comparison matrix is 
disturbing by a random factor in order to simulate the “real” situation, when the 
DM make mistakes in their matrix. Next the numbers in matrix are rounded to the 
nearest numbers from used scale and the priority vector is calculated from the 
matrix. Obtained vector is compared with initially generated vector and the errors 
are calculated. For obtained matrices the inconsistency indices values are 
calculated and are compared with errors in priority vectors. 

The figures below present histograms created upon results that are obtained for 
various scale parameters.  
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Fig. 1. RE in PV for geometric scale with common ratio 2�/Y, and 33 numbers 

 

Fig. 2. RE in PV for geometric scale with common ratio 1.2, and 17 numbers 

 

Fig. 3. RE in PV for geometric scale with common ratio 2�/	, and 17 numbers 
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Above figures present histograms of relative errors in priority vectors obtained 
from matrices 5x5 with geometric method. Matrices are disturbing by random 
factor with standard deviation equal 0.1, 0.2 and 0.3. One random chosen element 
of matrix is multiple by 3. The results obtained for various parameters and amount 
of elements are similar what is quite surprising.  
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Abstract. Formal methods in software engineering play an essential rôle in 
software development process. In recent years, we have prepared software package 
consisting of more modules, where each of them handles some semantic method. In 
this paper we present two new modules added to our software package – a module 
for handling the mathematical expressions and a module for visualizing the 
categorical denotational semantics. 
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1. Introduction 

 
Nowadays, software engineering education must to teach many new skills. In 

fact, software engineering does not mean only to write better programs [1, 2]. 
Formal methods are very important for developing of correct software systems, in 
particular to verify the correctness of the systems or at least of some desired 
aspects of their behavior. Still new technologies are used in practical approach and 
many of them are coming from formal methods. To help future software experts 
with understanding of formal methods grounded in semantics, learning software 
that illustrates and visualizes important techniques seems to be very fruitful [3]. 

 In this paper we present two new modules integrated to our software package – 
a module which handles the mathematical expressions (analysis, evaluation, 
abstract syntax tree, postfix form) and a module which visualizes the denotation of 
a program in categorical morphisms. In the second section our software package is 
briefly introduced. A tool handling the mathematical expressions is described in the 
third section and a tool for visualization of a running program in the fourth section.  
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2. Our Software Package 

Teaching of the course on Semantics of programming languages is supported by 
our software package consisting of several modules. Actually, the software 
package contains the following modules: 

• a compiler from source code written in the Jane language into code of an 
abstract machine, which is a source-to-source compiler; 

• an emulator of an abstract machine code – a module, which executes the 
instructions of an abstract machine and shows an actual memory state and 
an evaluation stack; 

• a decompiler of an abstract machine code back into source written in the 
Jane language, which is also a source-to-source compiler; 

• a tool for visualization of program execution based on categorical 
denotational semantics defined in [4]; and 

• a tool for handling the arithmetic and Boolean expressions. 
 

The last two listed modules are new and they actually extended the previously built 
software package presented in [5]. A general scheme of the new extended software 
package is in Fig. 1. 
The main motivation for this integrated software package was to help students to 
understand better formal semantics, and to motivate them to make their own 
experiments. We follow the joint research goal based on common research work 
[6]. 

3. Tool for Arithmetic Expressions 

Arithmetic and Boolean expressions are very widely used in programming. 
During the lot of programs executions some expressions are evaluated and possibly 
stored in the memory. They can stand on a right-hand side of an assignment 
statement 

 
� ≔ u 

 
or their values are used in the conditional and loop statements. In those cases, the 
values are never stored and they are used as transients. 

Because the work with expressions is considered as fundamental, we decided to 
prepare the software which allows to this process easier. A tool for handling the 
arithmetic expressions allows to use the following functions: the program 

• checks the input expression and to recognize the type (arithmetic or 
Boolean one); 

• realizes the error recovery; 
• allows a user to input the values for particular variables identified in the 

expression entered; 
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• evaluates an expression with input values (can be possibly changed 
interactively, in any time); 

• produces the post fix form of an expression;
• draws the abstract syntax tree for an input expression in 

(only variable names, only values or variable names with values, resp.); 
and 

• stores the graphic output into file for later use.

Fig. 1 A general scheme of teaching software package for course on Semantics
 
The module uses for checking the expressions the basic inference rules for 

arithmetic and Boolean expressions
 

u ∷= �|�|u + u|u
� ∷= >�Txu|<8yu|

and extended rules with some extra operations
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evaluates an expression with input values (can be possibly changed 
 

produces the post fix form of an expression; 
draws the abstract syntax tree for an input expression in three versions 
(only variable names, only values or variable names with values, resp.); 

stores the graphic output into file for later use. 

A general scheme of teaching software package for course on Semantics 

e uses for checking the expressions the basic inference rules for 
arithmetic and Boolean expressions 

− u|u ∗ u|(u),
| ¬  �| � ∧ � |u ≤ u|u = u|(�), 

and extended rules with some extra operations 

 

evaluates an expression with input values (can be possibly changed 

three versions 
(only variable names, only values or variable names with values, resp.); 

 

e uses for checking the expressions the basic inference rules for 
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u ∷= �|�|u + u|u − u|u ∗ u|u/u| − u| + u|(u),
� ∷= >�Txu|<8yu| ¬  �| � ∧ � |� ∨ �|u ≤ u|u = u|(�). 

 
A user can input the values of expressions and possibly change them interactively, 
in any time. An expression can be evaluated immediately when a user entered the 
values for all found variables. After changing the values, an expression can be 
recalculated. The resulting values of particular expressions are calculated with the 
semantic functions for arithmetic and Boolean expressions defined e.g. in [7] or in 
[8] using the standard mathematical rules with preserving the associativity and 
precedence of operators. If an error in checking the expression occurs, an error-
recovery procedure is applied with information about the errors with possible 
positions in an input expressions. Furthermore, the program converts the input 
expressions in infix form into the postfix form, the program produces graphic 
output with an abstract syntax tree of an input expression. 

The application is now successfully used as a learning tool for the students of 
the course Semantics of programming languages: 

• for preparing the lecture materials and laboratory exercises; 
• for individual study and the for the experimental approach to learning; and 
• for preparing the testing and exam materials. 

4. Visualizing Tool for Categorical Denotational Semantics 

A module, which handles the source code written in Jane and shows how the 
program is being executed with denotational semantics in categorical structures, is 
also a new module in our software package. This module takes as input a text 
consisting of well-structured statements of the language Jane according the 
following inference rule: 

 
| ∷= � ≔ u|skip||; ||if � then | else ||while � do |. 

 
An output of this program is a path in category consisting of morphisms that 

represent each step of execution. Categorical approach to denotational semantics is 
defined in [4] and the program follows those definitions of categorical 
representations of a program constructs. Visual expressing of the meaning of 
programs in categories is illustrative and demonstrative. Graphical output can help 
better understand particular steps of execution inside the program within the 
changes of variables stored in memory. A module simply reads source text from a 
file or allows user to write the source directly. The next step is to setting up the 
values of program variables. Starting of simulation consists of several steps. The 
lexical and syntax analysis – the traditional phases of compiler are executed: white 
characters are dropped and input is checked. If an error occurs, a program shows an 
information about it and it stops the translation of input source text. A semantic 
analysis is very simple, because a language Jane uses only two implicit types – 



Mathematical Mode

 

integers for arithmetic expressions and two
expressions. 

We show as an example how the input program is processed. We take the 
following program as a source code
dividend and 0 as divisor. The prog
and a remainder (stored in �). 

 
begin
    �
    while
        
        
end;

 
Categorical denotational semantics of this program is a compound morphisms 

and its graphical representation is in 
 

Fig.  2 Categorical denotational semantics of a given program
 
After setting the starting values 

all states which arise during the run of a program. State table is depicted in 
 

Fig.  3 A state table during the running of a program
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tic expressions and two-values Boolean type for Boolean 

We show as an example how the input program is processed. We take the 
source code for a program. It takes input values: � as a 

as divisor. The program calculates an integer quotient (stored in �) 

begin
≔ 0;

while (0 ≤ �)do (
 � ≔ � + 1;
 � ≔ � − 0; )
;

 

Categorical denotational semantics of this program is a compound morphisms 
and its graphical representation is in Fig.  2. 

 
Categorical denotational semantics of a given program 

After setting the starting values � with 17 and 0 with 5, the program calculates 
all states which arise during the run of a program. State table is depicted in Fig.  3. 

 
 

A state table during the running of a program 

 

values Boolean type for Boolean 

We show as an example how the input program is processed. We take the 
as a 

) 

Categorical denotational semantics of this program is a compound morphisms 

 

with 5, the program calculates 
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5. Conclusion 

We have presented in this paper the new parts integrated into our learning 
software. These modules provide graphic outputs which are very easy to 
understand and they can help in learning and in teaching process for the course 
Semantics of programming languages. We want to extend our learning software 
package with other modules based on operational semantics with categorical 
structures and coalgebras according to [9] and for the other important and relevant 
semantic methods. 
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In construction equipment, in particular, various types of excavators, hydraulic 
cylinder are used. They are responsible for the movement of individual machine 
parts. The length of the piston rod limits the working range of the cylinders, which 
in the case of construction machine members is relatively small. In the case when a 
wide operating range is required, telescopic hydraulic cylinders are used, which are 
characterized by a larger number of components. Multistage cylinders consist of a 
piston rod and several cylinders. They are used in lifting systems in semi-trailers of 
trucks, elevators with hydraulic drive or as mining supports, so-called hydraulic 
stands.  

Due to the considerable length of these systems in combination with a relatively 
small cross-section they can be treated as slender systems. Therefore, when 
analyzing the strength of hydraulic cylinders, the strength of the material and 
buckling criterion should be taken into account. Pinned mounting on both sides is a 
typical way of mounting hydraulic cylinders. The wear of the actuator eyes in 
connection with possible soiling and corrosion may result in the occurrence of 
additional friction forces, occurring in the actuator connections with the lifting 
system in the truck. 

Stability analysis of hydraulic cylinders was presented in papers [1-4]. In this 
work, the effect of the mounting rigidity of the telescopic hydraulic cylinder on its 
strength and stability was analyzed. The boundary value problem regarding to the 
stability of the system was carried out on the basis of the static stability criterion. 
To determine the maximum load capacity from the point of view of material effort, 
the Lamé theory for thick-walled tubes was used. 

The first picture shows a diagram of a telescopic hydraulic cylinder, taking into 
account Euler's load. This system consists of n-1 cylinders and piston rod. The 
hydraulic telescopic cylinder is considered as a fully extended system due to the 
fact that in this case it has the least stiffness. Rotational springs CR modelling the 
rigidity of the guiding and sealing elements were introduced between following 
members. Two rotational springs CR0 and CRn are analyzed in the mounting 
locations, which model the occurrence of additional resistances in the joint 
connection. 



 

 
Diameter of the cylinders (outer 

 zi t U R wi t U Rd d n i g n i g d d n i g n i g= + − + − = + − + − −

where: g
 
Each element of the hydraulic cylinder is characterized by adequate flexural 

rigidity (EJ)
cylinders and the 

 

Fig. 1. 

Potential energy of the system can be written as: 
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Taking into account the potential energy in the principle of minimum potential 
energy (δV
displacement (3) 
in form: 
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Diameter of the cylinders (outer dzi and inner dwi) were defined as:

2( ) 2( ) ; 2( ) 2( 1)zi t U R wi t U Rd d n i g n i g d d n i g n i g= + − + − = + − + − −

gU - thickness of sealing element; gR thickness of cylinder. 

Each element of the hydraulic cylinder is characterized by adequate flexural 
(EJ)i. Elements of the structure marked as i = 1,2,…,n

cylinders and the n-element correspond to piston rod.  

g. 1. Scheme of n-stage telescopic hydraulic cylinder subjected to Euler’s load

Potential energy of the system can be written as:  
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Taking into account the potential energy in the principle of minimum potential 
V=0), after appropriate mathematical transformations, equations of 

displacement (3) and natural boundary conditions of the system (4a

gineering 

 

) were defined as: 

2( ) 2( ) ; 2( ) 2( 1)zi t U R wi t U Rd d n i g n i g d d n i g n i g= + − + − = + − + − −  (1a,b) 

thickness of cylinder.  

Each element of the hydraulic cylinder is characterized by adequate flexural 
i = 1,2,…,n-1 correspond to 

 

stage telescopic hydraulic cylinder subjected to Euler’s load 

( )

)
1

1

2

1 1
0

1 0

2

1 1

0

1 1 1

2 2 2

i

i i R

x

n n i i i i
Rn R i

x

d w x dw x dw x
V EJ dx P dx C

dx dx dx

dw x dw x dw x
C C dx

+

=

+ +

=

 
 = − + +
 
 

 
 
  

(2) 

Taking into account the potential energy in the principle of minimum potential 
=0), after appropriate mathematical transformations, equations of 

and natural boundary conditions of the system (4a-h) are obtained 
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(4a-h) 

Solution of equations of displacement can be written as follow: 

 ( )
2( ) sin( ) cos( ) ;i i i i i i i i i i i i

i

P
w x A k x B k x C x D k

EI
= + + + =  (5a,b) 

Taking into account the solution (5) in boundary conditions, system of equations 
is obtained. Determinant of the coefficients matrix of this system equated to zero is 
an equation, from which the critical load of the system can be calculated. 

Results of the numerical calculations, which include the influence of mounting 
rigidity on stability and strength of cylinder barrel, are presented using non-
dimensional parameters:  

( ) ( ) ( ) ( )
2

0
0; ; ; ; ;U R C R C Rn C cr CR

GU GR CR CR CRn cr
t t n n n n

g C l C l C l P lg

d d EI EI EI EI
ζ ζ ζ ζ ζ λ= = = = = = (6a-f) 

In the Fig.2 dependence between the critical load parameter λcr and the stiffness 
parameters of rotational springs in the mounting locations of the hydraulic cylinder 
ζCR0 and ζCRn for three configurations is presented. The curve number 1 refers to the 
change in the parameter ζCRn (spring in the top mounting). The curve number 2 
refers to the change in the parameter ζCR0 (spring in the bottom mounting).  In 
contrast, curve number 3 refers to the simultaneous change of both stiffness 
parameters, which is assumed to be equal. Horizontal curves relate to the critical 
load at the predetermined maximum allowable stress equal to the limit of elasticity. 
The index at the symbol λ expresses the value of the accepted stresses in MPa. 



 

Fig. 2. The influence of stiffness parameter

On the basis of obtained results, it is stated that a greater impact on the critical 
load value has an elastic mounting at the end of the cylinder barrel mounting 
(bottom end) in comparison to the point of pist
elastic fastening at both ends results in a much greater increase in the critical load 
of the hydraulic cylinder compared to the use of an elastic mounting only at one of 
its ends. The intersections of the buckling curves wit
define the areas of the system destruction as a result of loss of stability and material 
effort for different values of allowable stresses.
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Fig. 2. The influence of stiffness parameter ζCR0 and ζCRn on stability and strength of 
cylinder barrel  

On the basis of obtained results, it is stated that a greater impact on the critical 
load value has an elastic mounting at the end of the cylinder barrel mounting 
(bottom end) in comparison to the point of piston rod mounting. The use of an 
elastic fastening at both ends results in a much greater increase in the critical load 
of the hydraulic cylinder compared to the use of an elastic mounting only at one of 
its ends. The intersections of the buckling curves with stress lines shown in Fig. 2 
define the areas of the system destruction as a result of loss of stability and material 
effort for different values of allowable stresses. 
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Geometrically non-linear systems (columns, beams) are the object of many 
studies [1,2,3,4] in which the nonlinear theory and the theory of Bernoulli – Euler 
are used to formulate the boundary problem. One of interesting non-linear 
structures is the partially tensioned column, which was presented in the works 
[5,6,7,8]. The publications show the crucial influence of discrete elements on the 
vibrations frequency [3,7] and stability [6] (the  natural vibrations frequency and 
critical force of the system can be controlled). 

In this paper the influence of parameters such as translational and rotational 
stiffness of used springs and external load magnitude for variable location on 
vibration frequency (nonlinear component) is presented . The column in question 
corresponds to a screw drive system, which is used in platform lifts (equipped with 
an engine room located in the lower part of the frame).   
An external force is applied between the elements of the slender structure showed 
in the figure 1. The Euler's load subjected in point O does not change the line of 
action during the system deflection. The point of force application (described with 

parameter ζ) can be changed along the entire length of the rod as it happens when 
the screw-drive lift platform transport different load on various lifting height. In 
order to form a mathematical model the overall length of the system is divided into 
two parts respectively of lengths l1 and l2 (compressed lower part is indicated by 
the index 1 and tensioned upper part by the index 2). The considered structure is 
characterized (in whole length) by constant bending stiffness ((EJ)1 = (EJ)2 = (EJ)), 

compression stiffness ((EA)1 = (EA)2 = (EA)) and mass ((ρA)1 = (ρA)2 = (ρA)) 

(where: Ei – Young’s modulus, ρI – density, Ai – cross section area, Ji – 
geometrical axial moment of inertia of cross section of i-th element of the 
structure). The longitudinal displacement and rotation on the both of system ends 
are limited by the discrete elements in a form of translational (K0, K1) and 
rotational (C0, C1) springs. 



 

Differential equations of motion and natural boundary conditions of considered 
structure has been f
Euler theory.
directions of the system are as follows:

 

 

Equations 
following relations:

iξ

Where: 
frequency, 
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Fig. 1. Physical model of considered column

Differential equations of motion and natural boundary conditions of considered 
structure has been formulated on the basis of Hamilton’s principle and Bernoulli 
Euler theory. The differential equations of motion in transversal and longitudinal 
directions of the system are as follows:  
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Equations (1) and (2) are written in the non-dimensional form using the 
following relations: 
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Where: Si(τ) – internal force in i-th element of the structure, 
frequency, Wi(xi,τ), Ui(xi,τ) – transversal and longitudinal displacements.
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th element of the structure, ω - vibration 
transversal and longitudinal displacements. 
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The geometrical and natural boundary conditions are presented below:
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Results of numerical simulations of free vibrations
nonlinear ω2 components of free vibrations frequency)
tensioned slender system were presented in the non
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Fig. 2a-b. The relationship between non
Ω2 and external load application point 
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The geometrical and natural boundary conditions are presented below: 
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Results of numerical simulations of free vibrations (including linear ω0 and 
components of free vibrations frequency) of the considered partially 

were presented in the non-dimensional form, defined as:  

( )1

3

EJ

lK j= , 
l

l1=ζ , ( )
( )1

4
1

2
2

2 EJ

lAρωΩ = ,  j = 1, 2  (5a-f)              

 

nonlinear component of the free vibration frequency 
and external load application point ζ at different rotational springs stiffness. 

 

 

and 
partially 
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In the figure 2 the relationship between nonlinear component of vibration 
frequency and the ζ parameter (which shows the location of  Euler’s load 
application) in combination for different rotational springs stiffness is plotted. In 
simulations it has been assumed that external load magnitude λ = 10 (figure 2a) 

and λ = 50 (figure 2b), translational stiffness is k0 = k1 = 1000 and rotational 
stiffness c0 = c1. An influence of the rotational springs stiffness on dynamic 
behavior were analyzed. On the basis of the obtained results, it can be concluded 
that the rotational stiffness has great influence on the magnitude of non-linear 
component vibration frequency. The linear and non-linear component of vibration 

frequency changes in relation to the location of the external force ζ at given 
rotational stiffness. For higher magnitude of the external load, the greater 
difference in vibration frequency was obtained. 
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In the thermomechanical state calculation in the technological processes of 
metals and their alloys, the mechanical properties of the material depending on 
temperature are used, including tensile (compression) curves. These properties are 
determined based on the results of a static tensile test performed at different 
temperatures. In this area, intensive research of mechanical properties of steel are 
carried out [1 - 3], also due to their fire resistance [4]. 

Stress-strain dependencies can be defined in the form of curve points (Fig. 1)  
[3, 5]. 

 

 
Fig. 1. Tensile curves depending on the temperature for S235 steel [5]. 

 
Often, other parameters of the tensile curve as a function of temperature are 

used, such as the longitudinal modulus (Young modulus) E, strain hardening 
modulus, yield stress σ0 and tensile strength TS. In the elastic range (σ<σ0), the 
stress-strain function is described in accordance with Hooke's law: 
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 ( ) ( )εεσ TET, =  (1) 

where: σ – stress value of tension curve, ɛ - strain, T – temperature, σ0 – yield 
stress, E – Young modulus, 

In the elastic-plastic range, the tensile curve is described by a function or by a 
strain hardening modulus. The strain hardening functions were the subject of 
researchers' interest in the first half of the 20th century. Ludwik [6] began a 
modelling of the stress-strain curve and described it with following function: 

 Ln
LK εσσ += 0  (2) 

where σ represents stress, σ0 yield stress, ε plastic strain, KL and nL are the 
experimentally determined parameters. In turn, Hollomon [7, 8] suggested a 
function: 

 Hn
HK εσ =  (3) 

Swift [9] regarding the Hollomon’s law introduced the constant into the strain 
term: 

 Sn
SK σεε += 0  or ( ) '

0
' Sn
SK εεσ +=  (4) 

where ε0, KS, K’ S, nS i n’S are the parameters. 
Generating the function tensile curves can be described in the form: 

 ( ) ( ) ( )T,TT, sho 0εεσσεσ −+=  (5) 

where: σ0 – limit of elasticity or yield stress, σsh - strain hardening function, ɛ0 – the 
strain corresponding to yield stress σ0 determined by the dependence: 

 ( ) ( )
( )TE

T
T oσε =0  (6) 

When using the strain hardening modulus, which is the tangent of the angle of 
inclination of the function to the axis ɛ (Fig. 2a) this module is defined as follows: 

 ( ) ( ) ( )
( ) ( )TT

TTTS
T

max
sh

0

0

εε
σσ

−
−=  (7) 

In the case of elastic - ideal plastic material σsh(T) = 0 the tensile curve is straight 
parallel to the axis ɛ (Fig. 2b). 
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a) b) 

  
Fig. 2. Stress-strain curves: a) with strengthening; b) without strengthening. 

The calculation of stress as a function of strain and temperature requires, first, 
the determination of stress-strain curve points for a given temperature T or its 
parameters: Young modulus E(T), strain hardening modulus, yield stress σ0(T) and 
tensile strength ST(T) or ultimate tensile strength UST(T). The searched curve can 
be determined based on the curves defined for the temperatures closest to the 
considered temperature, that is, the determination of parameters of stress-strain 
curve for temperature T>T1 and T<T2, where T2 and T1 denote temperatures for 
which the tensile curves are known (defined). In case of curve description by the 
points, the searched curve at the desired temperature T is calculated for individual 
points, using the proportionality principle, according to the relationship (Fig 3): 

 ( ) ( ) ( ) ( ) ( )1
12

12
1 TT

TT

TT
TT ii

ii −
−
−+= σσσσ  (8) 

 
Fig. 3. Interpolation of stress-strain curve points. 
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Regardless of description method of the stress-strain curve, the stress values in 
the elastic range are determined analogously to the equation (1) according to 
Hooke's law: 

 ( ) ( )εεσ TET, =  (8) 

In the elastic-plastic range, the stress value is determined depending on the 
description of the curve. In the case of the curve description by points, the 
calculation of strain values for strain ɛ we start from determining the points of the 
curve ɛi and ɛi+1 (Fig. 4), between which there are strain value ɛ. The stress value is 
calculated from the dependence: 

 ( ) ( ) ( ) ( ) ( )i
ii

iiii
ii

T,T,
T,T, εε

εε
εσεσεσεσ −

−
−+=

+

++

1

11  (9) 

In the case of describing the strain hardening curve with the function [x], the stress 
value is determined in accordance with the formula: 

 ( ) ( ) ( )T,TT, sho 0εεσσεσ −+=  (10) 

W metodach numerycznych, w których stosuje się najczęściej zależności E = E(T), 
σ0 = σ0(T). Na rys. 4 and 5 przedstawiono wykresy tych zależności dla stali S235JR 
[10] and S355J2H [4]. 
 

           
Fig. 4. Young’s modulus and yield strength as a temperature function for S235JR steel. 
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Fig. 5. Young’s modulus and yield strength as a temperature function for S355J2H steel. 

 
Example of computations. 
In the example of computations, the models of tensile curves of S355J2H as a 
function of temperature based on the results of experimental studies contained in 
the research report Outinen et al. [1] is presented. The parameters of the Swift’s 
and Hollomon’s equations were determined in[11]. The comparison of the stress-
strain curves described by Swift and Hollomon laws for the temperature 500 0C 
with the experimental results and the curves obtained by interpolation from 400 0C 
and 600 0C in Fig. 6 is presented. 
 

 
Fig. 6. The comparison of the stress-strain curves described by Swift and Hollomon laws for 

the temperature 500 0C with the experimental results and the curves obtained by 
interpolation. 
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Mathematical models of many physical phenomena (in fields such as electricity 
mechanics, magnetism, thermodynamics, etc.) are described using second order 
linear partial differential equations, which are called equations of mathematical 
physics. The task of determining functions that describe these equations leads to 
infinitely many solutions. For specific cases a special solutions that meet certain 
initial and boundary conditions are sought [1].  

In order to solve equations of mathematical physics, the analytical or numerical 
methods are used. Analytical methods allow to obtain an exact solution of 
considered problem, but they can not be used in all cases. Numerical methods can 
be used in almost every case, but they give approximated results . 

One of the most popular analytical method used to solve equations of 
mathematical physics is the Fourier method. It is based on finding a solution in the 
form of the product of functions where each of them is dependent only on one 
variable. The use of appropriate boundary conditions makes possible to determine 
the value of constants appearing in the solutions [2,3]. 

One of the numerical methods widely used in the solving of equations of 
mathematical physics is the Finite Element Method (FEM). In this method, the 
analyzed area is divided into sub-areas, called finite elements, in which 
approximation functions are determined. These functions are algebraic 
polynomials, which are determined on the base of the rules of approximation 
interpolation. The form of the approximation functions depends on the number and 
positions of the nodes located within the finite element. Unknown variables in the 
nodes, such as temperature values are determined with the use of known boundary 
conditions. Finally the discrete set of the nodal variables is calculated as the 
solution of the system of algebraic equations [4,5,6].  

In order to verify the correctness of the results obtained with the use of 
numerical method, they are compared with the analytical solution of the considered 
problem. Obtaining good compliance of the compared analytical and numerical 
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solutions makes possible to confirm the correctness of the used numerical method 
[7]. 

In this paper the analytical and numerical solutions of the Laplace equation in 
two-dimensional region are presented. The analytical solution of the equation is 
obtained using the Fourier series. The numerical model is based on the Finite 
Element Method. The results obtained with the use of both methods are compared 
in order to verify the accuracy of numerical implementation. 
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Poster contains theorems describing invertible polynomial mappings  

( ) 22:, CChf →  

which have constant jacobian, don’t equal zero and one zero at infinity. There are 
given formulas on inverse for some cases.  
First case are polynomials having form: 

1
2

12
12

hXh

ffXf n
n

+=

+++= +
…

 

These mappings are not invertible.  
Next case are polynomials  

1
2

112
2

hXh

ffXf n
n

+=

+++= − …
 

which have constant jacobian. Then f will have form 

1
2

11
1

1

hXh

XahAhAhf n
nn

+=

++++= −
−
…

 

and for some conditions f  and h are invertible. 
Thus poster presents theorems for few examples of polynomial mappings, 

which are invertible and don’t invertible.   
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The Differential Transformation Method (DTM) is an updated version of the 
Taylor series problem. Even though the method has some drawbacks (e.g. small 
convergence region) is very useful to obtain solutions of many engineering 
problems which are described by the ordinary or partial differential equations.  

In this work differential transformation method is proposed as a method of 
analytical solving of vibration problem of a cantilever beam. There was assumed 
various parameters describing geometrical and physical properties of the beam and 
damage occur at one point of the system. Results of the application of the DTM  is 
reducing the problem of vibrations into solving the system of algebraic linear 
equations supplemented with boundary conditions for the clamped-free beam and 
conditions (continuity) associated with the occurrence of damage.  
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 DIDACTIC PANEL 

In this year the Didactic Panel in Polish is organized. This part of the 
conference proceedings concerns the new Law on Higher Education 
(act 2.0) which will apply from October 2018. On the next pages some 
abstracts about this subject are presented. 



Mathematical Modeling in Physics and Engineering 
 

90 
 

  



Mathematical Modeling in Physics and Engineering 
 

91 
 

PROFESSIONAL PRACTICES IN THE STUDY PROGRAM 
ACCORDING TO LAW 2.0. REGIONAL POSSIBILITIES OF 

PROFESSIONAL PRACTICES 

Jolanta Borowska 

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

jolanta.borowska@im.pcz.pl 

Słowa kluczowe: Ustawa 2.0, praktyki zawodowe 

Ustawa 2.0 -  Prawo o szkolnictwie wyższym i nauce , dotycząca zmian  
w szkolnictwie wyższym, opracowywana jest przez Ministerstwo Nauki  
i Szkolnictwa Wyższego, [1].  

Zgodnie z projektem Ustawy 2.0 studia będą prowadzone na poziomie: studiów 
pierwszego stopnia, studiów drugiego stopnia oraz jednolitych studiów 
magisterskich. Przy czym będą funkcjonowały dwa profile studiów: 
- praktyczny, na którym ponad połowa punktów ECTS jest przypisana zajęciom 
kształtującym umiejętności praktyczne, 
- ogólnoakademicki, na którym ponad połowa punktów ECTS jest przypisana 
zajęciom związanym z prowadzoną w uczelni działalnością naukową. 

Program studiów o profilu praktycznym przewiduje praktyki zawodowe  
w wymiarze co najmniej:  
- 6 miesięcy – w przypadku studiów pierwszego stopnia i jednolitych studiów 
magisterskich, 
- 3 miesięcy – w przypadku studiów drugiego stopnia. 
Powyższe zasady związane z praktykami zawodowymi nie dotyczą studiów 
przygotowujących do wykonywania następujących zawodów: lekarza, lekarza 
dentysty, farmaceuty, pielęgniarki, położnej, diagnosty laboratoryjnego, 
fizjoterapeuty, ratownika medycznego, lekarza weterynarii, architekta oraz 
nauczyciela. W przypadku praktyk dla wyżej wymienionych zawodów uwzględnia 
się standardy kształcenia, [2].  
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Mathematical Modeling in Physics and Engineering 
 

92 
 

INTERDISCYPLINARY STUDIES  
ACCORDING TO LAW 2.0  

Joanna Klekot 

Institute of Mathematics, Częstochowa University of Technology,  
 Częstochowa, Poland 

joanna.klekot@im.pcz.pl 
 

W projekcie nowej ustawy o szkolnictwie wyższym i nauce nie występuje  
pojęcie studiów interdyscyplinarnych. Nie oznacza to jednak, że Ustawa 2.0  
uniemożliwia prowadzenie takich kierunków. 
Zgodnie z projektem uczelnia przyporządkowuje kierunek studiów do co najmniej 
jednej dyscypliny. W przypadku przyporządkowania kierunku studiów do więcej 
niż jednej dyscypliny, wskazuje dyscyplinę wiodącą i w jej ramach ma być  
uzyskiwana ponad połowa efektów uczenia się. 
Utworzenie studiów na określonym kierunku, poziomie i profilu wymaga  
pozwolenia ministra. Pozwolenia nie wymaga utworzenie studiów na kierunku 
przyporządkowanym do dyscypliny (wiodącej), w której uczelnia posiada  
kategorię naukową A+ albo A. 
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Zróżnicowanie oferty dydaktycznej poprzez wprowadzenie dwóch profili 
kształcenia: praktycznego i ogólnoakademickiego zostało po raz pierwszy 
uwzględnione w nowelizacji ustawy Prawo o Szkolnictwie Wyższym z dnia 
11.07.2014 r. Obecna ustawa Prawo o Szkolnictwie Wyższym i Nauce (Ustawa 
2.0) również obejmuje te dwa profile kształcenia, przy czym przewiduje 
wzmocnienie ich odrębności. W przypadku profilu praktycznego wprowadza 
mechanizmy motywujące do prowadzenia studiów odpowiadających wyzwaniom 
gospodarki i przygotowujących absolwentów do potrzeb rynku pracy. W świetle 
ustawy profil praktyczny obejmuje moduły zajęć służące zdobywaniu przez 
studenta umiejętności praktycznych i kompetencji społecznych, przy założeniu, że 
ponad połowa programu studiów określonego w punktach ECTS to zajęcia 
praktyczne kształtujące te umiejętności i kompetencje, w tym umiejętności 
uzyskiwane na zajęciach warsztatowych, które są prowadzone przez osoby 
posiadające doświadczenie zawodowe zdobyte poza Uczelnią. Prezentacja 
przedstawia uwzględnione w Ustawie 2.0 regulacje prawne oraz wymogi 
uruchamiania kierunków studiów o profilu praktycznym. 
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Profilowanie studiów wyższych wprowadziła nowelizacja ustawy Prawo 
o Szkolnictwie Wyższym z dnia 11.07.2014 r., wówczas to nastąpiło rozróżnienie 
profilów kształcenia na profil ogólnoakademicki i profil praktyczny. Zgodnie 
z założeniami ustawy profil ogólnoakademicki to profil programu kształcenia 
obejmujący moduły zajęć powiązane z prowadzonymi w Uczelni badaniami 
naukowymi, realizowany przy założeniu, że ponad połowa programu studiów 
(mierzona punktami ECTS) obejmuje zajęcia służące zdobywaniu przez studenta 
pogłębionej wiedzy. Ustawa Prawo o Szkolnictwie Wyższym i Nauce (Ustawa 2.0) 
wprowadza jeszcze bardziej wyraźny podział na profile kształcenia, a w przypadku 
profilu ogólnoakademickiego kładzie nacisk na zwiększenie roli i wykorzystania 
wyników badań naukowych prowadzonych w jednostce w procesie kształcenia. 
W prezentacji przedstawione zostaną podstawowe kwestie organizacyjne i prawne 
związane z prowadzeniem studiów o profilu ogólnoakademickim w świetle Ustawy 
2.0, z uwzględnieniem możliwości uruchomienia studiów o takim profilu na 
kierunku Matematyka na Wydziale Inżynierii Mechanicznej i Informatyki 
Politechniki Częstochowskiej. 
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Nowa ustawa o szkolnictwie wyższym, zwana Konstytucją dla Nauki (Ustawa 
2.0), opracowywana jest od ponad dwóch lat. Projekt znowelizowanej ustawy 
został przedstawiony 22 stycznia 2018 roku przez Ministra Nauki i Szkolnictwa 
Wyższego Jarosława Gowina. Jedna z kluczowych zmian dotyczy nowego podziału 
dyscyplin naukowych. W chwili obecnej w Polsce mamy 8 obszarów wiedzy, 22 
dziedziny nauki i sztuki oraz 102 dyscypliny naukowe. Według Ministerstwa Nauki 
i Szkolnictwa Wyższego „problemem jest rozdrobniona klasyfikacja obszarów 
wiedzy, dziedzin i dyscyplin, która jest powiązana z uprawnieniami do 
prowadzenia studiów wyższych i studiów doktoranckich oraz do nadawania stopni 
w nauce i sztuce, jest źródłem poważnych problemów w prowadzeniu 
interdyscyplinarnych badań naukowych. Nie służy też właściwej prezencji Polski 
w światowym obiegu nauki”, [1]. Z tego względu została zaproponowana nowa 
klasyfikacja dziedzin i dyscyplin nauki, oparta na klasyfikacji OECD (Organizacja 
Współpracy Zagranicznej i Rozwoju). Według klasyfikacji OECD wyróżnia się 6 
dziedzin nauki (nauki przyrodnicze, nauki inżynieryjne i techniczne, nauki 
medyczne i nauki o zdrowiu, nauki rolnicze, nauki społeczne, nauki 
humanistyczne) i 41 dyscyplin. Matematyka znajduje się w grupie nauk 
przyrodniczych. Oczywiście, dopóki nie powstanie ostateczna wersja nowej listy 
nie można być pewnym przeniesienia klasyfikacji OECD wprost, niemniej jednak 
można przypuszczać, że jej zasadniczy trzon nie zostanie naruszony. 

Jedną z najważniejszych konsekwencji wprowadzenia nowego zestawienia 
dyscyplin naukowych jest przedstawiony w projekcie Ustawy 2.0 nowy sposób 
prowadzenia ewaluacji jakości działalności naukowej. Ewaluacji będą poddawane 
poszczególne dyscypliny nauki prowadzone na uczelni, a nie jak do tej pory 
jednostki organizacyjne uczelni. Według projektu ustawy, jak wyjaśniał minister 
Gowin, „to uczelniom, a nie ich jednostkom organizacyjnym, będą przypisane 
uprawnienia do prowadzenia studiów i nadawania stopni naukowych. To uczelnie, 
a nie wydziały, będą przedmiotem ewaluacji w przekroju poszczególnych 
dyscyplin”, [2]. W wyniku ewaluacji uczelnia może uzyskać jedną z pięciu 
kategorii: A+, A, B+, B, C. Przynależność do jednej z tych kategorii determinuje 
możliwość nadawania stopni naukowych i tworzenia nowych kierunków 
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