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 The conference Mathematical Modeling in Physics and Engineering – 
MMPE’21 is organized by Czestochowa Branch of Polish Mathematical Society 
jointly with the Department of Mathematics of Czestochowa University  
of Technology. 

Mathematical modeling is at the core of contemporary research within a wide 
range of fields of science and its applications. The MMPE’21 focuses on various 
aspects of mathematical modeling and usage of computer methods in modern 
problems of physics and engineering. The goal of this conference is to bring 
together mathematicians and researchers from  physics and diverse disciplines  
of technical sciences. The conference participants represent a prominent group of 
recognized  scientists as well as young researchers  and PhD students. This time we 
have speakers from University of Lodz, Technical University of Košice, Gdansk 
University of Technology and Czestochowa University of  Technology. 

This year the conference is organized for the 12th time. Due to the COVID-19 
pandemic the Organizing Committee decided to hold the event online to ensure all 
participants may meet safely. 
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APPROXIMATION OF THE RIESZ-CAPUTO FRACTIONAL 
DERIVATIVE OF VARIABLE ORDER 

Tomasz Blaszczyk 1, Krzysztof Bekus 2, Krzysztof Szajek 3, Wojciech Sumelka 4 
1,2Department  of Mathematics, Czestochowa University of Technology,  

 Czestochowa, Poland 
3,4Institute of Structural Analysis, Poznan University of Technology, 

 Poznan, Poland 
1tomasz.blaszczyk@pcz.pl, 2krzysztof.bekus@im.pcz.pl, 3krzysztof.szajek@put.poznan.pl, 

4wojciech.sumelka@put.poznan.pl 

Keywords: Riesz-Caputo derivative, variable order, numerical integration  

In the last few decades, the fractional differential equations have become  
a relatively flexible modelling tool especially when strong scale-effect appears [1]. 
In most applications of the fractional calculus, the order of differential/integral 
operators is assumed to be fixed along the analysed process. However, new 
interesting possibilities arise when we consider the order of the fractional 
derivatives or/and integrals not constant over the process but to be a spatial 
variable function α(x). 

The most common fractional operators studied in the literature are left-sided 
derivatives taking into account a long memory characteristic (they accumulate all 
the 'historical' data). Recently, several researchers develop a theory where both 
fractional operators are taken into account, like the Riesz–Caputo fractional 
derivative [2] or the fractional differential operator being a composition of the left 
and right fractional derivatives [3]. 

In this work, we are studied the following Riesz-Caputo fractional derivative of 
variable order with α depending on space variable [4] 

 ( ) ( ) ( )1
( ) ( ( ) ( 1) ( ))

2
RC x C x nC x
x x x x x xD f x D f x D f xα α α

− + − += + −
ℓ ℓ ℓ ℓ

 (1) 

Operators ( )C x
x l xDα

−  and ( )C x
x xDα

+ℓ  are well known fractional Caputo derivatives, with 

fixed memory length ℓ  and  variable order ( ) 0xα > , defined as 

 ( ) ( ) 1 ( )1
( ) ( ) ( )

( ( ))

xC x n x n
x l x x l

D f x x f d
n x

α −α −
− −

= − τ τ τ
Γ − α   (2) 
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 ( ) ( ) 1 ( )( 1)
( ) ( ) ( )

( ( ))

n
xC x n x n

x x x
D f x x f d

n x

+α −α −
+

−= τ − τ τ
Γ − α 

ℓ

ℓ
 (3) 

During the presentation a few modified classical numerical integration methods, 
for the approximate computation of the Riesz-Caputo derivative (1) will be 
presented. The proposed methods are based on polynomial interpolation. Obtained 
numerical results will be compared with the exact ones (received by using series 
representation of the Riesz-Caputo derivative [5]). Additionally, the experimental 
rate of convergence will be estimated for discussed approximations. 
 
This work is supported by the National Science Centre, Poland under Grant No. 
2017/27/B/ST8/00351.  
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[4] Blaszczyk T., Bekus K., Szajek K., Sumelka W., Approximation and application of the Riesz-
Caputo fractional derivative of variable order with fixed memory, Meccanica (2021). 
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FAILURES IN OVERLOADED POWER GRIDS 

Zbigniew Domanski  

Department of Mathematics, Czestochowa University of Technology,  
Czestochowa, Poland 

zbigniew.domanski@im.pcz.pl 

Keywords: failure, power grids, statistics 

The growing diversity of multicomponent systems raises questions about the 
reliability and yield of these systems under progressive loadings. From the 
operational point of view, the most intriguing question is how the properties of 
individual components combine to produce the overall performance of the system 
to which they belong. This question is important because under parallel load units 
become overloaded and fail. These failures trigger subsequent over loadings which 
reduce the system performance or eventually lead to a catastrophic avalanche of 
failures. Such a catastrophe happens because systems subjected to an increasing 
load begin to fail when the internal load exceeds the critical value of less reliable 
units. 

An important class of multicomponent systems includes power grids. Typical 
power grids, such as distribution networks, combine thousands of components that 
are interconnected according to specified geometries represented by graphs. 
Especially, the small-world topology is reported as present and beneficial in large-
scale installations involving nationwide power systems as well as medium or small 
power grids. Particularly, in smart grids of renewable energy sources, such as 
small-scale photovoltaic systems or small-wind turbines, the small world topology 
turns out to be beneficial. For example, networks with small-world connectivity 
can significantly enhance their robustness against different attacks by  
a simultaneous increase of the rewiring probability and average degree. 
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Fig. 1. Exemplary small-world networks: from a regular ring lattice to a random lattice. 

We apply the fibre bundle model to analyse the highest load supported by a given 
power system when the system’s topology is perturbed. To collect data necessary 
to build statistical models we employ two families of graphs, whose nodes 
represent components of power grids. Specifically, we use the Watts-Strogatz 
model to generate small-world-like networks, whereas the second family involves 
the Erdos-Renyi graphs. Each power grid component is represented by a random 
variable that reflects the value of load supported safely by the component. In our 
simulations, a sequence of stepwise growing values of the external load gives the 
maximal value of load that the given system sustains and thus allows us to obtain 
data for different system sizes and different graphs. Due to the simulations, we 
have determined numerically effective distributions of maximal loads in 
hypothetical power grids. By fitting discrete distributions of maximal loads, we 
have found how the random component-load-thresholds influence the macroscopic 
yield of the power grid. 

References 

[1] Domanski Z., Spreading of Failures in Small-World Networks: A Connectivity-Dependent Load 
Sharing Fibre Bundle Model, Frontiers in Phys. 2020, 8, id 552550. 

[2] Newman M., The structure and function of complex networks, SIAM Rev. 2003, 45, 167-256 
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robustness in power grids using complex networks concepts, Energies 2015, 8, 9211-9265. 
[4] Rosas-Casals M., Valverde S., Sole R. V., Topological vulnerability of the European power grid 

under errors and attacks, Int. J. of Bifurcation and Chaos 2007, 17, 2465-2475. 
[5] Sun Y., Tang X., Zhang G., Miao F., Wang P., Dynamic power flow cascading failure analysis 

of wind power integration with complex network theory, Energies 2017, 11, 63. 
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THE REWARD FOR A GOOD DECISION VS PUNISHMENT FOR 
THE WRONG ONE – HOW IT WORKS IN MACHINE LEARNING-

BASED CLASSIFICATION 

Andrzej Z. Grzybowski 

Department of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

andrzej.grzybowski@pcz.pl  

Keywords: ordinal classification, classification error costs, evolutionary learning 

Classification problems consist in identifying the most probable class c an 
instance v (usually represented by its feature vector x) belongs to. Classification 
problems are at the core of the field of machine learning. They have been 
researched intensively over the last decades. In literature, one can find great many 
different classifiers developed under different assumptions about the classification 
problems as well as by the adoption of different learning algorithms, e.g. [1], [2]. 
However, after studying many classification problems of different types and nature, 
it is clear to the machine-learning community that there is no single classification 
algorithm that is superior with all respects and for all datasets [3], a conclusion 
analogous to famous no free lunches theorem in the theory of stochastic search and 
optimization [4]. On the other hand, it appears that some learning algorithms 
outperform others for some specific problems and/or types of data. In this paper we 
focus on the ordinal classification problems, i.e. problems where the class label 
(target variable) takes on values in a set C of categories that exhibit a natural 
ordering. We consider multiclass problems, it is the case where the number k of 
classes is greater than 2. Then we have k(k -1) different classification errors with, 
possibly, different consequences. To each of those errors, it is assigned its specific 
error cost (weight) that represents the importance of its repercussions. An index of 
performance of a classifier is defined as the expected value of the classification-
result-cost, and consequently, the learning algorithms are aimed at finding  
a classifier that minimizes such an index. However, due to the fact that the 
optimality criterion cannot be expressed by any closed-form-mathematical 
expression and the value of the criterion can only be evaluated for each specific 
classifier separately, the minimization problem cannot be solved directly. 
Moreover, it implies that when looking for the expected cost minimum we have to 
confine ourselves to gradient-free optimization methods. Thus in presented studies 
global optimization (GO) methods that are based on the idea of the stochastic 
search are proposed to cope with such a task. We use computer simulations to study 
the performance of some popular stochastic global optimization methods as 
learning tools for some specific type of ordinal classification problems. Some 
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remarks about the impact of the error-cost-matrix on the probabilities of  
a particular error occurrence are formulated as well. 

Based on our simulation results one can conclude that among considered GO 
algorithms, the Genetic Algorithm (GA) is the best one as a tool for classifier-
learning tasks in the ordinal classification problems. The GA performs really well - 
the average probability of correct classification of an instance is about 0.9 and one 
hardly can expect a higher frequency of  correct decisions in such uncertain 
decision problems. Our simulations show that these probabilities of success 
decrease when the number of classes increases – a  rather intuitive observation. 
However, it is worth noticing that, in spite of this perhaps natural tendency, the 
supremacy of the GA over the remaining learning algorithms gets more evident 
when the number of classes increases. But one should be aware that in problems 
with unequal costs of classification errors, the probabilities of correct classification 
are not necessarily the most crucial ones. It is worth emphasizing that, instead, 
sometimes it is even more important not to make specific classification errors  
(in a given specific problem). In such cases one should focus on the weight matrix - 
proper construction of the matrix is of primary interest in all classification 
problems with unequal costs of misclassification errors. Our simulation 
experiments revealed some important facts about the influence of the weight matrix 
on the classifier-learning results. The  results that we have obtained during our 
simulations confirm that the proportions between the weights of particular 
classification errors have a proper impact on the proportions between 
corresponding probabilities of errors and, again, the GA learning algorithm is the 
best with respect to this issue. It was also shown, that the weights assigned to 
correct classifications are also very important, they make it easier for the learning 
algorithm to lower the probabilities of misclassification. Thus, the role of both the 
reward and punishment revealed by our results concerning machine learning is in 
line with the operant-conditioning principle formulated by Skinner to explain the 
human-learning nature, [5].  

References 

[1] Mane S., Sonawani, S. S., Sakhare S., and Kulkarni, P. V., (2014), ”Multi-objective 
Evolutionary Algorithms for Classification: A Review”, International Journal of Application or 
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SOLVING THE PROBLEM OF THERMAL CONTACT 
CONDUCTANCE WITH A TIME DERIVATIVE IN CONJUGATION 

CONDITION USING THE POTENTIAL METHOD 

Bohdan Kopytko 1, Roman Shevchuk 2 
1 Department of Mathematics, Czestochowa University of Technology,  

 Czestochowa, Poland 
2Institute of Applied Mathematics and Fundamental Sciences, Lviv Polytechnic National University, 

Lviv, Ukraine 
1bohdan.kopytko@pcz.pl, 2r.v.shevchuk@gmail.com 

Keywords: parabolic potential, Feller semigroup 

Consider the strip 

 { }( , ) :  0 ,  tS s x s t T x= ≤ < ≤ − ∞ < < ∞   

in the Euclidean space 2ℝ  of variables ( , )s x  (T >0 fixed) and two domains 

{ }(1) ( , ) :  0 ,  ( )tS s x s t T x r s= ≤ < ≤ − ∞ < <  

and 

{ }(2) ( , ) :  0 ,  ( )tS s x s t T r s x= ≤ < ≤ < < ∞  

in it, where ( ),  [0, ],x r s s T= ∈ is a given function which belongs to the Hölder 

class 21 ([0, ]),  0 1H T
α+ < α <  (see, e.g., [1, Ch. I, §1]). 

Below we will use the following notations: 1 2( , ( )),  ( ( ), );s sD r s D r s= −∞ = ∞  

( )bC ℝ  denotes the Banach space of bounded and continuous on ℝ  functions with 
the norm 

sup | ( ) |;
x

x
∈

ϕ = ϕ
ℝ

 

if Q  is the domain in the space 2ℝ  of points ( , )s x  and Q  is the closure of this 

domain, then , ,( ) ( ( )),m l m lC Q C Q  where m and l  are nonnegative integers, denote 

the sets of continuous functions on  ( )Q Q  for which there exist continuous partial 

derivatives with respect to s  and x  up to orders m and ,l  respectively 
0,0( ( ) ( )).C Q C Q=  
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Consider the following conjugation problem: find a classical solution 
( , , ),  0 ,  ,u s x t s t T x≤ ≤ ≤ ∈ℝ  of the heat equation 

 
2

( )
2

1
0,  ( , ) ,  1,2,

2
i

t

u u
s x S i

s x

∂ ∂+ = ∈ =
∂ ∂

 (1) 

which satisfies the “initial” condition 

 lim ( , , ) ( ),  ,
s t

u s x t x x
↑

= ϕ ∈ℝ  (2) 

and two conjugation conditions 

 ( , ( ) 0, ) ( , ( ) 0, ),  0 ,u s r s t u s r s t s t T− = + ≤ ≤ ≤  (3) 

 
1

2

( ) ( , ( ), ) ( ) ( , ( ) 0, )

( ) ( , ( ) 0, ) 0,  0 ,

u u
s s r s t q s s r s t

s x
u

q s s r s t s t T
x

∂ ∂σ + − −
∂ ∂

∂− + = ≤ < ≤
∂

 (4) 

where 1 2( ),  ,  ( ),  ( ),  ( ),  [0, ]x x s q s q s s Tϕ ∈ σ ∈ℝ  are given continuous functions; 

furthermore, 1 2( ),  0,  0,  0bC q qϕ∈ σ ≥ ≥ ≥ℝ  and 1 2 0.q qσ + + ≠  Here 

( , ( ) 0, )u s r s t−  ( , ( ) 0, )
u

s r s t
x

∂ − ∂ 
 and ( , ( ) 0, )u s r s t+  ( , ( ) 0, )

u
s r s t

x

∂ + ∂ 
 denote 

the limits of the function ( , , )u s x t  ( , , )
u

s x t
x

∂ 
 ∂ 

 at ( , ( ))s r s  as the point ( , )s x  

tends to ( , ( ))s r s  from the side of the domains (1)
tS  and (2)

tS  respectively. 
Note that the problem concerning the classical solvability of (1)-(4) appears, in 

particular, in the theory of diffusion processes when studying, by using the 
analytical methods, the so-called problem of pasting together two diffusion 
processes on a line (see, e.g., [2] and [3]). In these and in some other our papers the 
described problem is considered (including in a more general setting) under the 
assumption that the common boundary of the domains (1)

tS  and (2)
tS  is defined by 

the relation ( ) ,  [0, ],x r s r s T= ≡ ∈  where r  is a positive constant. 

Here, the problem (1)-(4) is considered for the case of curvilinear domains ( ) ,i
tS  

1,2,i =  under the condition that 0.σ ≠  
We prove the following theorem: 

Theorem. Assume that r  and ϕ  belong to the spaces 21 ([0, ])H T
α+  and ( )bC ℝ  

respectively. Assume also that the functions 1 2,  ,  q qσ  are continuous in [0, ]s T∈  

and 1 20, 0,  0.q qσ > ≥ ≥  Then the conjugation problem (1)-(4) has a unique 
solution 
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 1,2( ) ( )t tu C S C S∈ ∩  

for which the estimate 

  | ( , , ) |u s x t c≤ ϕ  

holds, and this solution can be represented in the form 

 ( , , ) ( , , , ) ( ) ( , , , ( )) ( , ) ,
t

s

u s x t g s x t y y dy g s x r V t d= ϕ + τ τ τ τ 
ℝ

 

where g  is the fundamental solution of the equation (1), V  is the solution of some 

Volterra integral equation of the second kind and c  is a constant. 
Furthermore, we prove that, using the solution of the problem (1)-(4), one can 

define the two-parameter Feller semigroup which describes some inhomogeneous 
Feller process on a real line. Some additional properties of the constructed process 
are also studied.  

References 

[1] Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N., Linear and Quasilinear Equations of 
Parabolic Type, Nauka, Moscow 1967 (in Russian). 

[2] Kopytko B.I., Portenko M.I., The problem of pasting together two diffusion processes and 
classical potentials, Theory Stoch. Process. 2009, 15(2), 126-139. 

[3] Kopytko B.I., Shevchuk R.V., On pasting together two inhomogeneous diffusion processes on a 
line with the general Feller-Wentzell conjugation condition, Theory Stoch. Process. 2011, 17 
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FRACTIONAL HEAT CONDUCTION IN A COMPOSITE SOLID 
CYLINDER SUBJECTED TO A HEAT SOURCE 

Stanisław Kukla 1, Urszula Siedlecka 2 

1,2Department of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

1stanislaw.kukla@pcz.pl, 2urszula.siedlecka@pcz.pl 

Keywords: fractional heat conduction, Caputo derivative 

Fractional calculus in mathematical modelling of the heat conduction was 
applied in many papers, for instance in the papers [1-4] the models with fractional 
derivatives were used. The subject of this contribution is an analysis of the effect of 
the derivative fractional order on the temperature distribution in a cylinder with  
a heat source. The object under consideration is composite cylinder consisting of 
inner solid cylinder and an outer concentric layer (Fig. 1). The heat conduction is 
governed by fractional heat equation with the Caputo time-derivative [1] 

 ( ) ( ) ( ) [ ] [ ]2
1

1 1
, , , , , , , 0, , , , 1,2i

i i i i
i i

T
T t r z g t r z t r z z H r r r i

a t

α

αλ −
∂

+ = ∈ ∈ =
∂

∇∇∇∇  (1) 

where iλ  is the thermal conductivity, ia  is the thermal diffusivity, ( ), ,ig t r z  is the 

volumetric energy generation, α  denotes the fractional order of the Caputo 
derivative [2] with respect to time t , 2∇∇∇∇  is the Laplace operator and 0 0r = . 

We assume the boundary conditions, the conditions of perfect thermal contact at 
interface ( 1r r= ) and the initial condition in the following form 

 

 

 

 

 

 

 

 

 

 

Fig. 1. A sketch of the considered finite cylinder 

H 

r1 r2 

z 
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 ( )1 ,0,T t z < ∞   (2) 

 ( ) ( )( )
2

2
2 2 2, ,

r r

T
a T t T t r z

r
λ ∞ ∞

=

∂ = −
∂

  (3) 

 
0

0,i

z

T

z =

∂
=

∂
 0, 1,2i

z H

T
i

z =

∂
= =

∂
 (4) 

 ( ) ( )1 1 2 1, , , ,T t r z T t r z= ,   
1 1

1 2
1 2

r r r r

T T

r r
λ λ

= =

∂ ∂=
∂ ∂

 (5) 

 ( ) ( )0, , , , 1, 2i iT r z F r z i= =   (6) 

where a∞  is the heat transfer coefficient and T∞  is the ambient temperature. 
To obtain the fractional equation with a homogeneous boundary conditions, we 

introduce new functions ( ), ,i t r zψ  given as 

 ( ) ( ) ( ), , , , , 1, 2i it r z T t r z T t iψ ∞= − =   (7) 

An analytical solution of the boundary-initial problem for the functions iψ  has 
been obtained in the form of double series of eigenfunctions 

 ( ) ( ) ( ) ( ), , ,
0 1

, , , 1, 2i m n i m n m
m n

t r z t R r Z z iψ θ
∞ ∞

= =
= =   (8) 

where ( ), ,i m nR r  and ( )mZ z  are received as solutions of corresponding 

eigenproblems, ( ),m n tθ  is a solution of the time-fractional non-homogenous 

differential equation. Numerical calculations of the temperature distribution in the 
considered cylinder are presented. 
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The problem of modeling neuronal activity to capture and reproduce accurately 
neurons behavior has resulted extremely challenging. Many models have been 
proposed to address this problem, starting from the Hodgkin-Huxley(HH) system, 
presented in 1952 in the form of an extremely complex four-dimensional phase 
space dynamical system, that although can be considered a foundation of neuronal 
modeling has a high level of complexity, to more modern variants such as the 
FitzHugh-Nagumo (FHN) or Morris-Lecar (Morris and Lecar, 1981). 

The idea of being able to simplify these models has lead to experiment with more 
simple and treatable discrete-time systems in the form of point maps: the map-
based models. Some of the most renowned ones, in one and two dimensions are:  
a modified FitzHugh-Nagumo system with a recovery variable used as a simple 
model of excitable neuron generating spikes; Aguirre-Campos-Pascual-Serrano 
model (2006), a map with two different branches for modeling spiking-bursting; 
Rulkov model (2002) and Courbage-Nekorkin-Vdovin model (2007), among 
others. 

In 1995, Dante R. Chialvo presented a 2D model for neural excitability ([2]). We 
have decided to focus our work in this model, given that most of the results related 
to it had a numerical or intuitive nature. 

The model takes the form:  

 ���� = ����, 	�
 = ��� exp�	� − ��
 + �    (1a) 

 	��� = ����, 	�
 = �	� − ��� + �  (1b) 

where x is a membrane voltage-potential (the most important dynamical variable in 
all the neuron models) and y is so-called recovery variable. The time-constant 
 � ∈ �0,1
, the activation dependence � ∈ �0,1
 and the offset c > 0 are the real 
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parameters connected with the recovery process. In turn, � ≥ 0 can be interpreted 
as a time-dependant perturbation of the voltage. 
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                            B 

Figure 1: A trajectory of a 2D- Chialvo model in (x,y)-phase space (A) and a corresponding voltage 
(filled circle) and a recovery- variable (empty circle) time plots (B). Parameters: � = 0.03, � =0.89, � = 0.18, � = 0.28. 

The 1-dimensional subsystem: 

 ���� = ����,  
 = ���  !�"� − ��
 + �  (2) 

Where  ∈ ℝ is a parameter, is called the 1-dimensional (1D) Chialvo model.  
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If � ≪ 1, the system (1a) - (1b) can be seen as a slow-fast (discrete) system, 
where the voltage variable x and the recovery variable y, can be referred to as fast 
and slow variables, respectively. Consequently, while �� describes spiking 
behavior, 	� acts as a slowly changing parameter (with time-scale variation % ≪ 1) 
that modulates the spiking dynamics. Such models can be analized by firstly 
treating (2) as a quazi-static approximation of (1a) - (1b) with parameter  ≡ 	. If 
for some values of r (2) exhibits equilibrium dynamics (due to the existence of  
a stable fixed point) and for some other values it exhibits periodic dynamics (due to 
the existence of a stable periodic orbit), then bursting in the system (1a) - (1b) 
occurs because slowly varying 	� acts as bifurcation parameter that makes the 
dynamics of x switching between these two regimes (similar approach can be 
applied for ODE bursting systems, compare e.g. with [8]). Therefore bursting 
behaviour in the above neuron model is indeed directly connected with the types of 
bifurcations present in the fast system (2).  

Origin and classification of bursting types in neurons (i.e. the repeating episodes 
when a few spikes occur in a rapid succession followed by a quiescence period) is 
a significant problem in neurophysiology of neurons. In order to characterize 
bursting dynamics of the Chialvo model (1a)-(1b), we study the existence and 
stability of fixed points and corresponding bifurcations in one-dimensional Chialvo 
model (2), i.e. showing that it produces fold bifurcation and flip bifurcation, which 
next are linked with Izhikevich and Hoppensteadt classification of bursting 
mappings ([6]). 
In particular, we rigorously prove that the system undergoes flip and saddle-node 
bifurcations. As an illustration of our results, we show below how the 1D Chialvo 
model undergoes a periodic flip bifurcation when � = 0 at �' = 3 and  ' = 3 −
ln�3
. 
 

           A                                                                    B 
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Figure 2: Cobweb diagrams for 1D Chialvo model and � = 0 using 150 iterations and initial point �* 
Panel A:  = 1.85, �* = 1.5, Panel B:  = 3 − ln �3
 (flip bifurcation value), �* = 4, Panel C:  =

2, �* = 1.5 

Finally, we show that a map ����,  
, independently of the value of parameter r, is 
an S- unimodal map (i.e. a unimodal maps with negative Schwarzian derivative). 
Since the theory of such maps is well-developed, we are able to prove uniqueness 
of attracting periodic orbits and describe chaotic behaviour, relevant for the 
classification of bursting neurons, with the existence of the absolutely continuous 
invariant probability measure (acip) with negative Lyapunov exponent almost 
everywhere (for some r values), which can be identified with some strong 
dependence on initial conditions. 
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It is about the divergence theorem – a one of the most important results in modern 
calculus with a wide spectrum of applications. For example, the known 
Archimedean principle saying that the buoyant force acting on an object immersed 
in a fluid is equal to the weight of the fluid displaced by the object, is simply one of 
its version (cf. [1]). On the other hand the divergence theorem is just a version of 
the Stokes theorem. Its unusualness come from the fact that it deals with a vector 
field. Vector fields represent a displacement of forces acting on a physical body. In 
practice, the values of the displacement can be measured exactly at the boundary 
only. The divergence theorem gives then some information on what is going inside. 
The vector character of the force makes that many nontrivial boundary conditions 
can be formulate when solving a boundary value problem. For example in the 
theory of elastic body there are the four natural boundary conditions: Dirichlet, 
Absolute, Relative and Neuman (cf. [2]). 
     Let us introduce some notions and facts that are necessary in formulating the 
divergence theorem and its generalizations. 

 
The Cartesian space  Rn is naturally equipped with some additional  

structures.  
First of all, with the Euclidean scalar product.  
For a fixed point p in Rn , the scalar product is a function g that 

subordinates - to any two vectors hooked at p - a real number.  
With respect to its vector arguments the function is  
(a)  bilinear, 
(b)  symmetric, 
(c)  positively defined.  
In the Cartesian space Rn the canonical scalar product of two vectors is 

defined as the sum of  products of their coordinates: 

 gcan(v,w)=v1w1+…+vnwn   

The system of n-vectors of the ordered canonical base in Rn  
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 e1,…,en  

is orthonormal with respect to the product g=gcan, i.e., 

 g(ei,ej)= δij     ( δij= 0 for i≠j and δij= 1 for i=j ),  

The next natural structure is the Euclidean volume form.  
The volume form is a function Ω that subordinates to any ordered system 

of n vectors hooked at p a real number.  
     With respect to its vector arguments the function is 

(d)  n-linear  
(e)  skew-symmetric 

(f ) nondegenerate 
In the Cartesian space Rn the action of canonical volume form on n-

vectors is defined as their determinant: 

 Ω can(v1,…,vn)=det(v1,…,vn)  

i.e., as the determinant of the matrix composed from vectors of the system 
as its rows (columns).                                
     On the system of n-vectors of the ordered canonical base 
the value of the volume form Ω  = Ω can equals 1, i.e., 
     (g)                                     Ω(e1,…,en)=1. 
The canonical structures g and Ω do not depend on the point p. In the 
practical and technical application there is a need yet to consider g and Ω as 
functions depending on p to expose e.g., inhomogeneity of the investigated 
medium (domain, object, material). The only demand then is that g  should 
fulfil the conditions (a)-(c). The demands on Ω are then the conditions (d)-
(f) and, additionally, the normalizing condition (g) that should be satisfied 
by any suitably ordered base e1,…,en, orthonormal with respect to the given 
g. 
 
Assume now that we have a domain D in Rn equipped with scalar product g 
and a volume form Ω satisfying conditions (a)-(g). We can define then the 
third structure:  
     Fix a point p in D. The vector product is a function that subordinates to 
any ordered system of (n-1)-vectors v1,…,vn-1 hooked at p the vector 
v1×…×vn-1 also hooked at p as follows: 
      Fix vectors v1,…,vn-1. The function 

 v  →  Ω(v,v1,…,vn-1)  
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defines a linear functional on the linear space of all vectors hooked at p. By 
the Riesz theorem the functional is represented by a vector. More explicitly, 
there exists a unique vector hooked at p – call it v1×…×vn-1 – representing 
the functional, i.e., satisfying 

 g(v, v1×…×vn-1)= Ω(v,v1,…,vn-1).  

     With respect to its vector arguments the vector product is 
     (h) (n-1)-linear 
     (i)  skew-symmetric. 
Moreover,  
     (j) the vector v1×…×vn-1 is g-orthogonal to each of the arguments v1,…,vn-

1, i.e., g(v1×…×vn-1, vi)=0, for i=1,…,n-1, 
     (k) the length |v1×…×vn-1| of v1×…×vn-1 is equal to the (n-1)-
dimensional measure (volume) of the parallelogram spanned by vectors 
v1,…,vn-1. In particular, it is equal zero if and only if the vectors are linearly 
dependent. 
     (l)  For any system of vectors v1,…,vn-1 orthonormal with respect to g the 
system v1×…×vn-1,v1,…,vn-1  is an orthonormal base  at p. Moreover,  
Ω(v1×…×vn-1,v1,…,vn-1  ) = 1, so the base is positively oriented. 
 
    Assume now that D is a bounded domain in Rn with a smooth boundary 
∂D. Assume that the considered structures  g and Ω are defined on D ∪ ∂D. 
Then g restricts naturally to ∂D. We will  denote the restriction by the same 
letter g. At the same time Ω induces the volume form Ω∂D on the boundary 
∂D as follows. Since, by the assumption ∂D is a smooth hypersurface in Rn, 
there exist, at every p∈∂D, exactly one unit outer vector n, normal to the 
boundary at p. The normal vectors constitute a smooth vector field on ∂D. In 
the case ∂D is a piece-wise smooth only, the field is defined almost 
everywhere on ∂D what does not influence the integral. In each case the 
form Ω∂D is defined for almost every p ∈∂D by  

 Ω∂D(v1,…,vn-1) =  Ω(n,v1,…,vn-1)  

for v1,…,vn-1 hooked at p and  tangent to ∂D.  
    It is clear that Ω∂D defines the orientation on ∂D in the sense that a basis 
v1,…,vn-1 of vectors hooked at p and  tangent to ∂D is positively oriented if 
and only if Ω∂D(v1,…,vn-1) > 0. We call this orientation the orientation 
induced on ∂D by the orientation of D.  One can show that:  
     An ordered  orthonormal basis v1,…,vn-1 represents the orientation 
induced on  ∂D  by the orientation of D if and only if   

 n = v1×…×vn-1.  
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    One can also show that the restricted g and induced Ω∂D are then 
compatible on ∂D, i.e., they satisfy the conditions (a)-(g) modified to the 
suitable dimension (dim ∂D = n-1). 
 
     Let X be a smooth vector field on D∪ ∂D. The divergence of  X, denoted 
by div X, is a function defined by 

 (div X ) Ω = LX Ω  

where LX  is the Lie derivative in direction X (cf. [3], Appendix 6). 
     One can show that in the particular case Ω = Ωcan, div X = 
∂X1/∂x1+…+∂Xn/∂xn. 
     Some more advanced considerations on the divergence can also be found 
in [4]. 
      Now we are ready to state: 
     The divergence theorem  

 
D
div X Ω = ( , )

D

g X n
∂
  Ω∂D.  

     Other versions of the theorem and possible applications will be given. 

References 

[1] Spivak M, Calculus on manifolds, a modern approach to classical theorems of advanced 
calculus, Addison-Wesley Publishing Company, 1995. 

[2] Pierzchalski A, Gradients: the ellipticity and the elliptic boundary conditions – a jigsaw puzzle, 
Folia Mathematica, Vol 19, No. 1, 2017, 65–83. 

[3] Kobayashi S., Nomizu K., Foundations of Differetial Geometry, Vol I, Interscience Publishers,  
a division of John Wiley & Sons, New York –London,  1963. 

[4] Kalina J., Kozłowski W., Pierzchalski A., On the geometry of a pair of foliations and  
a conformal invariant, to appear. 

  



Mathematical Modeling in Physics and Engineering 
 

25 
 

YOUNG MEASURES ASSOCIATED WITH SEQUENCES OF  
A CERTAIN CLASS OF M-OSCILLATING FUNCTIONS 

Piotr Puchała 

Department of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

piotr.puchala@im.pcz.pl 

Keywords: Young measures, m-oscillating functions, total slope, weak convergence  

The origin of the discovery of Young measures lie in the seeking the minima of 
integral functionals having non(quasi)convex integrands. One of the first examples 
concerning this type of optimization problems are attributed to Oscar Bolza and 
Laurence Chisholm Young. Namely, we want to minimize the functional of the 
form 

 -�.
 = / 0.� + 1234
356� − 17�8�

' 9�, (1) 

where the function v vanishes at the ends of the interval. The functional  - is 
bounded from below by the zero function, but it turns out that this infimum is never 
attained. The elements of the sequences minimizing the functional J are functions 
of highly oscillatory nature; they oscillate more and more wildly around the inf -. 

Contemporary formulation of this problem is as follows. We look for the 
infimum of the bounded from below functional of the form 

 -�.
 = / �:�, .��
, ∇.��
<= 9�, (2) 

where: 
- Ω is an open, bounded subset of ℝ� with sufficiently smooth boundary; 
- . is an element of a suitable (usually Sobolev) space ? of functions on Ω with values in a compact set  @ ⊂ ℝB; 
- �: Ω × ℝ� × ℝB� → ℝ ∪ G+∞I is assumed to satisfy suitable 

regularity and growth conditions. 
Laurence Chisholm Young proved in [5] that the weak* limits of the sequences 

of the form mentioned above are in general families of probability measures, 
nowadays called the Young measures. They are usually denoted  

 J = �J5
5∈=, (3) 
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where each J5 is a regular countably additive probability measure on the set @ ⊂ ℝB (that is, it belongs to the Banach space rca��@

.  
There are several (not entirely equivalent, but not pairwise disjoint) approaches 

to Young measures. One of them, described in [4], relies on regarding Young 
measures as weakly* measure- valued mappings  

 J: Ω ∋ � → J��
 ∈ rca��@
. (4) 

In the presentation we introduce a notion of a total slope of an oscillating 
function and a notion of m-oscillating function. We also state state the result which 
collectes most of the existing examples of homogeneous Young measures with 
densities into its special case.  
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In this paper main focus will be paid on the physical analysis of the mixing  
process and the effect of throat geometry on the mixing phenomenon in Venturi gas 
mixer by determining the optimal ratio between throat diameter and it’s length 
using the open source computational fluid dynamics simulation software  
OpenFOAM. The main task of a gas mixer is to mix the fuel (gas) with air in such 
a way, that in the gas engine optimal combustion takes place [1]. To provide an 
efficiency combustion process in the industrial gas engine, the Venturi mixer 
should be designed to allow the best possible mixing of the two components, air 
and fuel. Additionally it should be compact, with minimum of pressure loss, and 
moreover good suction pressure in the throat due to the Venturi principle. A lot of 
analyzes have been performed to improve the efficiency of the whole mixing  
process in a Venturi gas mixer [2, 3, 4]. However, the influence of some  
geometrical parameters have not been analyzed so far in detail, what is important  
especially for the manufacturers of such gas mixing devices. One of such important 
geometrical parameter was the throat length, how its length impacts the whole  
mixing process in a Venturi gas mixer. Therefore investigations were performed to 
determinate the optimal ratio between the throat diameter (which was set  
constantly on Ø25mm) and its length (from 100mm → 200mm) using the open 
source computational fluid dynamics simulation software OpenFOAM. 

 

Fig. 1. Venturi gas mixer – a) dimensions – b) fuel ring with six injection holes 
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Three different ratios (4:1, 6:1, 8:1) has been investigated in this paper. Different 
throat lengths are the result of different diffuser angles and mixing characteristics 
at the outlet of the Venturi throat what has been presented in Figure 2. 

Fig. 2. Mixing traces and methane CH4 concentration distribution for different throat lengths – a) 100 
mm (Ratio 4:1), b) 150 mm (Ratio 6:1), c) 200 mm (Ratio 8:1) 

This numerical analysis showed that the throat geometry of a Venturi gas mixer 
influences significantly the mixing characteristics. Different diffuser angles causes 
different concentration distributions. As shown in Figure 2, the longest mixing 
trace appears for the greatest throat length → 200mm. Initially was expected, the 
longer the mixing trace, the better the mixing characteristic in the outlet of the  
Venturi gas mixer which turned out not to be true in this case analysis. 
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In this paper we studied the fractional Euler-Bernoulli beam equation including 
a composition of the left and right fractional Caputo derivative 

 ( ) ( )0

C C

L
D D u x F x− +

α α =  (1) 

where  

 ( ) ( )
( )2 2

f x
F x

EIα−=
ℓ

 (2) 

We analysed the equation (1) with three types of boundary conditions   

 ( ) ( ) ( ) ( )0 ' 0 ' 0u u u L u L= = = =  (3) 

 ( ) ( ) ( ) ( )0 ' 0 '' 0u u u L u L= = = =  (4)  

 ( ) ( ) ( ) ( )0 ' 0 '' ''' 0u u u L u L= = = =  (5) 

The differential equation is transformed into integral ones, using the assumed 
boundary conditions. Exact solutions received for each considered case of 
boundary conditions (3) – (5) contain the composition of the left and right 
Riemann-Liouville integral. 
Case I. For boundary condition (3) we have the solution 

 

( ) ( )( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )

0

1

0 0

1
1 2 1 1

2 L x L

L Lx L

x
u x x L I I F x

L L

L
x L DI I F x I I F x

+ −

+ − + −

α
α α

α =

α− α α α
=

 = α + α − + α − − α + 
 

− − +α 

 (6) 

Case II.  For boundary condition (4) the solution has the following form 
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( ) ( ) ( )( )(
( )( ) ( )( )) ( )

( )( ) ( ) ( )( )( ) ( ) ( )

2

2 1

1

0

2 1

0 0

1 3
1

1 2 1

1 2 1 1

L x L

L Lx L

x
u x L

L

x L DI I F x

L L x L D I I F x I I F x

+ −

+ − + −

α

α−

α− α
=

α− α α α
=

= α − α −
α α −

+ α − α − − α +

− α + − α + α − − α + +

 (7) 

Case III.  For boundary condition (5) we received the solution   

 
( ) ( ) ( ) ( )

( )

1

0 0

0

1 * *

*

L Lx L x L

L

x x
u x I I f x L x I I f x

L L

I I f x

+ − + −

+ −

α
α α α− α

α = =

α α

 α − − α − + −  
  

=
 (8) 

 

Fig. 1. The exact solution of Eq. (1) with boundary conditions (4) for the function f(x)=1 
and parameters L = 1 , ℓ = 1 , E = 1 , and I = 1 . 
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Professional programmers need to come to terms with the need to know several 
programming languages. On the one hand, knowledge of several languages can 
significantly increase the mental load on the programmer, on the other hand, all 
languages have similar syntactic structures, and semantics and the standard 
language library are a significant difficulty in mastering languages [1]. 

A Domain-Specific Language is a programming language with a higher level of 
abstraction. Unlike low-level languages, which are applicable across different 
domains, domain-specific languages (DSLs) specialize in a particular subject area 
[2]. One of the very nice examples of DSL is a battle management language, for 
which the semantic approach was formulated in [5]. DSLs are considered as small 
programming languages with some limited expressiveness. They are usually 
focused on a particular problem domain (possibly not Turing-complete) – for 
particular problems, a DSL could be a much more efficient tool than a general low-
level language. In that sense, they provide more effective development than in 
general purpose languages. In practice, domain specific languages are often 
implemented as an embedded language into some another language. Furthermore, 
the semantics is then expressed in the host language [3].  

We report here on a semantics of DSL expressing a robot coordination 
language—a language to help the robot get to the exit door. An introduction to this 
language and some basic ideas about formulating the denotational and operational 
semantics were published at [4]. 

In this contribution, we show how to formulate other semantic approaches for 
this kind of language and we show the semantic equivalence for the presented 
semantic methods.  
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The basis of welding processes is the generation of the appropriate temperature 
field by the heat source or sources. Therefore, the starting point for modelling and 
analyzing thermomechanical states during welding is always to adopt an 
appropriate model of the heat source and describe the temperature field [1-6]. 

In work, the modelling of a three-dimensional temperature field in a butt welded 
joints of two 6060 aluminium alloy sheets using FEM (Finite Element Method) is 
presented. Welding tests of single pass butt welded joint of 6060 aluminium alloy 
sheets were carried out using two methods (in the argon shield): GTA (Gas 
Tungsten Arc) and GMA (Gas Metal Arc). 

In computation of temperature field, the Goldak's double ellipsoidal heat source 
model has been used [7]. The thermal-mechanical properties of the material were 
assumed to depend on the temperature. The Workbench, DesignModeler, 
Mechanical, Fluent and CFD-Post modules of the ANSYS program were used for 
numerical simulations [8-10]. The scheme of single-pass butt welding of 
aluminium alloy sheets is presented in Fig. 1. 

 

Fig. 1. The scheme of single-pass butt welding process 

In the description of the geometry of joints, cube type elements were used, with 
density of grid in the heat affected zone. The parabolic shapes of face and root 
were assumed based on the literature and results of the experiment. The 
temperature distributions in cross-sections of welded joints as well as welding 
thermal cycles at selected points were analyzed.  
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In Fig. 2, the temperature distribution during welding of Al6060 alloy sheet 
with the GTA method at time t = 69 s from the beginning of welding in the cross-
section is presented. 

 

Fig. 2. Temperature distribution during welding of Al6060 alloy sheet with the GTA 
method at time t = 69 s from the beginning of welding in the cross-section 

In turn, Fig. 3 shows the temperature distribution during welding of Al6060 
alloy sheet with the GMA method at time t = 24 s from the beginning of welding in 
the cross-section. 

 

Fig. 3. Temperature distribution during welding of Al6060 alloy sheet with the GMA 
method at time t = 24 s from the beginning of welding in the cross-section 

The results of numerical simulations were verified experimentally. The 
comparison of experimental and numerical simulations is presented in Fig. 4 (for 
GTA method) and Fig. 5 (for GMA method). 
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Fig. 4. The comparison of calculated fusion zone (left) to the metallographic tests (right) 
for GTA welding method 

 

Fig. 5. The comparison of calculated fusion zone (left) to the metallographic tests (right) 
for GMA welding method 

Comparison of calculated and obtained in the experiment the characteristic 
limits of heat affected zones showed satisfactory compatibility. The red color on 
the left shows the area in which we reached the temperature above the solidus 
where the material melts. The difference in dimensions obtained in the simulation 
with respect to experimental tests is below 5%. 

Numerical simulations of the temperature field in welding processes for sheets 
made of aluminium alloys allowed to determine the fusion zone of welded sheets in 
the mentioned welding processes. 

Numerical simulations of the temperature field in welding processes for sheets 
made of aluminium alloys: 

- butt welded joint made with the GTA method (using a infusible (tungsten) 
electrode in the Argon shield with the addition of a deposited metal in the 
form of a wire), 

- butt welded joint made with the GMA method (using a fusible electrode in 
the Argon shield), 

allowed to determine the fusion zone of welded sheets in the mentioned processes. 
The obtained results are the origin point for the calculation of strain and stress 

states in the welding processes considered in the paper. 
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Let [ ]baI ,=  be a closed interval of real axis ( baRba <∈   ,, ).  The function 

RI →:φ  is said to be of bounded variation on the interval [ ],,baI =  briefly  

)(IBVf ∈ , if the quantity  

 ( ) ( ) ( )
=

−−=
m

i
ii xxIV

1
1sup, φφφ

π
,  

where the supremum is taken over all partitions  of the interval I ,  is finite. We 
will write ( ) ( ) ( ) ( )IC  whereICfor  IBVICBV ∩  denotes the family of real 

continuous functions defined on .I   

Definition. An operator )()(C:K ICBVIBV →  is said to be locally defined, if 

for every open interval RJ ⊂  and for all functions )( , ICBV∈ϕφ  the following 
implication holds true:  

 ( ) ( ) .JJJJ KK ϕφϕφ ==  

Theorem 1. If a locally defined operator K  maps )( ICBV into itself,  then it is  
a Nemytskij composition operator, i.e., there exists a unique function 

RRIh →×:  such that  

 ( )( )        ,,))(( xxhxK φφ =      ),( ICBV∈φ       ( ).Ix∈   (1) 

In the talk we also characterize locally defined operators acting between the spaces 
of functions of bounded variation under the additional assumption that they are 
locally bounded or uniformly bounded. 

We say that a function [ ] RRf →×1,0:  satisfies a condition ( )ii  if for every 

0r >  there exists a constant 0>rM  such that for every  , Nk ∈  every partition 
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1...0 1 ≤<<= ktt  of the interval [ ]1,0=I  and every finite sequence 
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The Nemytskij composition operator )()(C:K ICBVIBV →  is said to be 

locally bounded, if the image of each ball ( )( )MBK BV ,0  is bounded in )(C IBV . 

Theorem 2. If a locally defined operator K  maps )( ICBV into itself  and is 

locally bounded then there exists a unique function  RRIh →×:  satisfying 
condition ( )ii  such that (1) is fulfilled.  

Conversely, if an operator II RRK →:  is defined by (1) for some function 
RRIh →×:  satisfying condition ( )ii  of Theorem  2, then the operator K  maps 

)( ICBV into itself  and is locally defined and locally bounded. 

Theorem 3.  If a locally defined operatorK  (with continuous with respect to the 
second variable generating function ( ) RRxh →⋅ :, ) maps )( ICBV into itself and 

is uniformly bounded, then there exist ( ) )( ICBV∈⋅α  and ( ) )( ICBV∈⋅β  such 
that  

 ( ) ( ) ( )        ,))(( xxxxK βφαφ +=      ),( ICBV∈φ       ( ).Ix∈   

As a corollary we get that every Lipschitzian or uniformly continuous locally 
defined operator acting between the spaces of functions of bounded Jordan 
variation has an affine (in the second variable) generator. 
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