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 The conference Mathematical Modeling in Physics and Engineering – 
MMPE’17 is organized by the Institute of Mathematics of Czestochowa University 
of Technology.  

Mathematical modelling is at the core of contemporary research within a wide 
range of fields of science and its applications. The MMPE’17 focuses on various 
aspects of mathematical modelling and usage of computer methods in modern 
problems of physics and engineering. The goal of this conference is to bring 
together mathematicians and researchers from  physics and diverse disciplines of 
technical sciences. Apart from providing a forum for the presentation of new 
results, it creates a platform for exchange of ideas as well as for less formal 
discussions during the evening social events which are planned to make the 
conference experience more enjoyable. 

This year’s conference is organized for the 9th time. Every year the conference 
participants represent  a prominent  group of recognized  scientists as well as young 
researchers and PhD students from domestic and foreign universities. This time we 
have invited speakers from University of Pardubice (Czech Republic), University 
of Zielona Góra (Poland), Sun-Yat Sen University (China), Technical University of 
Košice (Slovakia),University of Lodz (Poland), Poznan University of Technology 
(Poland), participants from Vasyl Stefanyk Precarpathian National University 
Ivano-Frankivsk (Ukraine) as well as from Polish higher education institutions: 
Technical University of Czestochowa, Poznan University of Technology, Cardinal 
Stefan Wyszyński University in Warsaw. 

 This year the conference proceedings contain 53 papers and provide an 
interesting overview of the variety of problems studied within the contemporary 
mathematical modeling and its applications. All presentations topics as well as all 
articles included in the proceedings were reviewed and accepted by  the 
Conference Scientific Committee. 

 
 
 
       Organizers 
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MODELLING INTERFACIAL HEAT TRANSFER IN A 2-PHASE 
FLOW IN A PACKED BED 

Dariusz Asendrych, Paweł Niegodajew 

Institute of Thermal Machinery, Czestochowa University of Technology,  
 Czestochowa, Poland 
imc@imcpcz.czest.pl 

Packed beds are commonly used in various industrial processes. Drying, 
absorption or rectification can be mentioned as some typical examples. High 
efficiency of these multiphase (usually gas-liquid) processes is ensured by the 
enlarged contact area between working fluids provided by the packed bed filling. 
For typical working conditions, i.e. in the so-called trickling flow regime, liquid 
flows down driven by gravity, while gas freely moves up with no excessive flow 
resistance. Complex geometry of the packed bed filling makes the flow modelling 
challenging even for isothermal conditions. However, most of industrial processes 
indicate non-isothermal character, thus the heat transfer between working phases 
needs to be included in the governing equations. Unfortunately the existing source 
literature practically does not include any information about the interfacial heat 
transfer coefficients which are required to close the energy equation by the relevant 
source terms responsible for heat exchange between fluid phases. 

  

Fig. 1. Schematic diagram of experimental facility 
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The main objective of the present paper was to develop a correlation relating the 
interfacial heat transfer coefficient with the key flow/thermal parameters through 
the typical group numbers. The experiment was performed with the use of a small 
laboratory test rig schematically shown in Fig. 1. The distilled water and the 
ambient air were used as flowing media. The water was pumped from the container 
(5) and flowed through the filter (8), the flowmeter (18) and the distributor (21) 
supplying the column. Afterwards, it flowed through the packed bed (20) and it 
was collected in the tank (13) and reversed to the main container (5). Water flow 
was enforced by the pump (9) and controlled by operating valves (7) and (12). The 
column (19) was filled with 6 mm glass Raschig rings (20). The air flow was 
enforced by a vacuum pump (11). The air was sucked to the column at its bottom 
and flowed upward the packed bed. Then the air left the column through the outlet 
(23) and reached the cooler (17) where the water vapour was separated and 
collected in a tank (15), whereas the air passed through the gas flowmeter (16) and 
quited the test rig. Temperature of the water in the main container was kept 
constant with the use of a temperature controller (3) connected to a thermocouple 
(4) and a heater (6). Temperatures of working media were measured upstream and 
downstream the packing section with the thermocouples (25) and (30) for gas while 
(24) and (31) for liquid. The signals from all sensors were sent through the AD 
converter (2) to the PC (1) for data acquisition and postprocessing. Additionally the 
air humidity was measured with the sensors (29) and (26). More information about 
the experiment and the measurement procedure can be found in [1]. 
 

  
Fig. 2. Heat exchanged between phases (left) and Nusselt number (right) versus superficial liquid and 

gas velocities for three different inlet liquid temperatures [1] 

The experimental results were then used to construct a mechanistic model of the 
general form: 

 
1

i

N
b
i

i

Nu D
=

= ∏  (1) 
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where Di stands for a set of group numbers and bi (i=1, …, N) is the matrix 
corresponding to their exponents to be found by fitting experimental data. 
According to [3] the Reynolds, Galileo, Prandtl, Eötvös and Grashof numbers are 
regarded as the most relevant group numbers to describe the heat transfer processes 
in a 2-phase flow system. In this way viscous, inertial, gravity, surface tension and 
buoyancy effects can be taken into account. After detailed and multi-step 
regression analysis the correlation of the following form was proposed: 

 1.169 0.8399 0.7176ReG GNu Ga Eo−= ⋅ ⋅ ɺɺ  (2) 

characterised by the correlation coefficient R = 0.992 indicating very good 
correspondence between experimental and modelled Nu values. Index "G" in the 
above formula stands for the gas phase. 

The regression analysis is summarised in graphical form in Fig. 3 presenting the 
parity plot of the modelled Nusselt number (formula (2)) against the experimental 
data. In order to make it easier to interpret the results the solid lines corresponding 
to ±10% errors are plotted in the graph. As can be seen the proposed correlation fits 
the measured data with very high accuracy characterised by the correlation 
coefficient equal to 0.992. Very few data points lie outside the ±10% limit and they 
correspond to the lowest liquid load range where the increased measurement 
uncertainty may be expected. 
 

  

Fig. 3. Parity plot for experimental and modelled Nusselt number values [2] 

It should be remarked that the correlation was developed for the limited range 
of gas and liquid loads and for particular type and size of catalyst elements. Thus, 
there is a need of further research work, including much wider gas and liquid loads 
as well as different random packing element types and sizes, to provide better 
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understanding of the heat transfer processes in complex geometrical constraints. 
The wetting efficiency of the packed bed seems to be one of the most important 
factors governing the interfacial heat transfer. The existing correlations need 
further development to provide better precision and thus to allow accurate 
estimation of the interface contact area. The correlation developed in the present 
paper is planned to be used in the forthcoming numerical research devoted to the  
2-phase gas-liquid flow in a porous media. It will be incorporated to an existing 
CFD (computational fluid dynamics) model allowing for adequate modelling of 
such complex physio-chemical processes as carbon dioxide chemical absorption in 
packed beds. 

Keywords: porous media, 2-phase flows, interfacial heat transfer, regression analysis 
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MODELLING OF QUASI-COHERENT DISPLACEMENT IN 
CHAIN-LIKE BODIES’ MOVEMENT 

Kamila Bartłomiejczyk 

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

The article concerns the extension of the sequential algorithm which has been 
previously described e.g. in [1-3]. This algorithm can be used for simulation of the 
chain-like bodies’ movement. One of the most widely studied phenomenon which 
is associated with the chain motion is the chain translocation through the pore in 
membrane (see e.g. [4-11]). The translocation process plays a crucial role in many 
processes. It is applied inter alia in DNA and RNA sequencing techniques [10-14], 
controlled drug delivery process [15-17] or gene therapy [18, 19].  

Many different algorithms are used in literature for the analysis of the chain-like  
structures movement (see e.g. [4-9, 20, 21]). Therefore, it seems to be reasonable to 
create an efficient algorithm which can reflect the chain behaviour as good as it 
possible. In this paper the following extensions of the sequential algorithm for the 
simulation of the chain-like bodies’ motion are described: compression propagation 
mechanism and movement-direction preference mechanism. The former is the 
extension of the tension propagation which has been described in [2]. It can be said 
that the compression propagation mechanism allows for ‘pushing’ of the segment 
which is moving by the previously moved segment. In [2] only ‘pulling’ of moving 
segment is possible. Implementation of the movement-direction preference 
mechanism causes that the direction of the moving segment step depends on the 
position of the segment which has been moved previously. In other words, the 
moving segment is pulled (or pushed) in the direction of the previously moved 
segment. In the article the implementation of these mechanisms is described, the 
parameters associated with them are defined and the influence of these parameters 
on the translocation time is analysed. 

Keywords: algorithm, chain-like structure, compression propagation, movement-
direction preference, translocation time 
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THE PROOF OF REMARK ON THE JACOBIAN CONJECTURE 

Grzegorz Biernat 

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 

grzegorz.biernat@im.pcz.pl 

Let ( ) 2 2, :f h →ℂ ℂ  be the polynomial mapping  having two zeros at infinity. 

Remark. Let  

 ( ) 2 1 2 2 2 3 1...
p

p p pf XY f f f f− − −= + + + + +  (1) 

 ( ) 2 1 2 2 2 3 1...
q

q q qh XY h h h h− − −= + + + + +  (2) 

where 1p q≥ ≥  and fi, hj  be the complex forms of variables X, Y of degrees 
i, j respectively.   
If ( ) ( )1 1Jac , Jac ,f h const f h= =  then 

2 1

1 1

q

k kX Y h
−

− − and 

 
1

1 12 11 2 11 2 11

1 1 1
...

p p

pq q qf X Y h A X Y h A X Y h
q q q

−

−− − −

     
= + + + + + +     
     

 (3) 

 
1

1 12 11 2 11 2 11

1 1 1
...

q q

qq q qh X Y h B X Y h B X Y h
q q q

−

−− − −

     
= + + + + + +     
     

 (4) 

for some constants 1 1 1 1,..., , ,...,p qA A B B− − . The form 
2 11qh −  is defined by the 

formula 
2 1

1 1
2 11q

q q
qh X Y h

−

− −
−= .  

Sketch of the proof.  

For q = 1 the remark is true.  
Let 2p ≥ . We assume that the formula (3) and (4) are true for exponents  
q = 1, ..., p – 1.  We will prove that for  q = p the formulas are also true. Let's save 
again the formulas (1) and (2) for q = p 

 ( ) 1) 2) 3)

2 1 2 2 2 3 1...
p

p p pf XY f f f f− − −= + + + + +  (5) 

and  
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 ( ) 1) 2) 3)

2 1 2 2 2 3 1...
p

p p ph XY h h h h− − −= + + + + +  (6) 

Consecutively we have  

  2 1 2 1p ph f− −=  (7) 

 ( ) 1

2 2 1 2 2

p

p ph A XY f
−

− −+ =  (8) 

We obtain 

 ( ) ( ) 1

2 1 2 2 1 2 3 1...
p p

p p pf XY h h A XY f f
−

− − −= + + + + + +  (9) 

and  

 ( ) 2 1 2 2 2 3 1...
p

p p ph XY h h h h− − −= + + + + +  (10) 

Let 1 0A ≠ . We assume 

 
( ) ( ) ( ) ( )

( )

1

2 3 2 3 1 1
1 1 1

1

2 3 1

1 1 1
...

....

p

p p

p

p

f f h XY f h f h
A A A

XY f f

−
− −

−
−

= − = + − + + − =

= + + +

ɶ

ɶ ɶ

 (11) 

Then    

 ( ) ( )
1

1
Jac , Jac ,h f f h const

A
= − =ɶ  (12) 

Now we convert  f to h and h for fɶ and apply the induction assumption for  

exponent p – 1,. Therefore ( ) 2

2 3

p

pXY f
−

−
ɶ , which allows to determine the form 

2 3 1pf −
ɶ . We have 

1

1 12 3 1 2 3 1 2 3 1

1 1 1
...

1 1 1

p p

pp p ph XY f B XY f B XY f
p p p

−

−− − −

     
= + + + + + +     − − −     

ɶ ɶ ɶ

  (13) 
and 

1 1

1 22 3 1 2 3 1 2 3 1

1 1 1
...

1 1 1

p p

pp p pf XY f A XY f A XY f
p p p

− −

−− − −

     
= + + + + + +     − − −     

ɶ ɶ ɶ ɶɶ ɶ

 (14) 
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for some constants 1B , …, 1pB − ; 1Aɶ , …, 2pA −
ɶ . Moreover 

 ( ) 1

2 1 2 3 11
p

p p

p
h XY f

p

−
− −=

−
ɶ  (15) 

so ( ) 1

2 1

p

pXY h
−

− . From the formula (15) we obtain 

 2 1 1 2 3 1

1 1

1p ph f
p p− −=

−
ɶ  (16) 

So 

1 2

1 22 1 1 2 1 1 2 1 1

1 1 1
...

p p

pp p pf XY h A XY h A XY h
p p p

− −

−− − −

     
= + + + + + +     
     

ɶ ɶ ɶ  (17) 

and  

1

1 12 1 1 2 1 1 2 1 1

1 1 1
...

p p

pp p ph XY h B XY h B XY h
p p p

−

−− − −

     
= + + + + + +     
     

 (18) 

Therefore 

1

1 2

1 1 22 1 1 2 1 1 2 1 1

1 2

1 22 1 1 2 1 1 2 1 1

1 2 1 1

1 1 1
...

1 1 1
...

1

p p

pp p p

p p p

p p p

p p

f h A f

h A XY h A XY h A XY h
p p p

XY h A XY h A XY h
p p p

A XY h
p

− −

−− − −

− −

− − −

− −

= + =

      
= + + + + + + +      

       

     
= + + + + + + +     
     

 
+ + 

 

ɶ

ɶ ɶ

   (19) 

If A1= 0 we have analogously 

 ( ) 2

2 4 2 2 4

p

p ph A XY f
−

− −+ =  (20) 

and with the constant A2 we proceed in the same way as the constant A1.  

Keywords: Jacobian, zeros at infinity, Jacobian Conjecture 
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In recent years there has been an increase in the number of publications devoted 
to differential equations of fractional order, which are widely applied in modeling 
many problems in: physics, control theory, bioengineering and mechanics [1,2,3].  

In many cases, obtaining an analytical solution for fractional differential 
equations is very difficult, or even impossible, then we apply numerical methods. 

Consider a one-term fractional differential equation including the left-sided 
Caputo derivative: 

 ( ]1,0)),(,()(0 ∈=+ αψα tfttfDC , (1) 

with initial condition 

 0)0( ff = . (2) 

The starting point for the all numerical methods discussed in the paper is 
transformation of the initial value problem (1-2) into an equivalent integral 
equation: 

 ).0())(,()( 0 ftftItf += +ψ
α  (3) 

We compare numerical results obtained by Euler method [4] and two variants of 
Adams-Bashforth-Moulton (A-B-M) method [4,5]. In Euler method we apply 
rectangle rule to calculate integral in formula (3). First variant of (A-B-M) method 
requires trapezoidal rule to calculate corrector. The second one requires two 
methods to determine the corrector: Simpson's rule or trapezoidal rule depending 
on an odd or even number of nodes in the integration interval. 
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Fig. 1. Exact and numerical solutions of equation (1) where )())(,( tftft =ψ , 1)0( =f , 

75.0=α . 

 
Fig. 2. The absolute error generated by numerical methods. 

Keywords: fractional calculus, fractional differential equations, fractional integral 
equations, numerical methods 
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In this paper, we propose a new approach to the numerical evaluation of the 
fractional integral operators. The presented methodology is performed by utilizing 
the well-known B-spline interpolation [1].  

We introduce definitions of fractional integral operators. The left and right 
fractional Riemann-Liouville integrals of order Rα +∈  are defined respectively 

(see [2]) 

 ( ) ( )
( )

( )1

1
: d , for

x

a
a

f
I f x

x
x a+

α
−α

τ
= τ >

Γ α − τ∫  (1) 

 ( ) ( )
( )

( )1

1
: d , for

b
x

b f
I f x b

x
x−

α
−α

τ
= τ <

Γ α τ −∫  (2) 

where Γ  denotes the Gamma function. The interval [ , ]a b  is divided into N  sub-

intervals 1[ , ]i ix x+  with a constant step ( ) /h b a N= − . Next, we replace the 
function f  by the following expression 

 ( ) ( )
1

1

N

j j
j

S K xx B
+

=−

= ∑  (3) 

where the B-splines are defined in the following way 

 ( )

( )
( ) ( ) ( )
( ) ( ) ( )

( )

3

2 2 1

2 33 2
1 1 1 1

2 33 2
3

1 1 1 1

3

2 1 2

3 3 3
1

3 3 3

othe is0 rw e

j j j

j j j j j

j
j j j j j

j j j

x x x x x

h h x x h x x x x x x x

B h h x x h x x x x x x xh

x x x x

x

x

− − −

− − − −

+ + + +

+ + +

 − ≤ <

 + − + − − − ≤ <
=  + − + − − − ≤ <

 − ≤ <


 (5) 

and coefficients 1 0 1, , , NK K K− +…  are obtained by solving the matrix equation 
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( )
( )
( )

( )
( )
( )

1 0

0 0

1

1

1

3 3
0 0 0 0 '

1 4 1 0 0 0

0 1 4 1 0 0
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0 0 0 1 4 1

'3 3
0 0 0 0

N

N N

N N

K f xh h
K f x

f x

f x

K f x

K f x

h h

−

−

+

 −    
    
    
    
     =    
    
    
    
    

    −
  

⋯

⋯

⋯

⋮ ⋮⋱

⋯

⋯

⋯

 (4) 

In Figure 1 we present numerical evaluation of ( )3

1
1I x−

α −  for 5N =  

 

Fig. 1. Numerical (points) and analytical (lines) results for different values of α . 
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In this paper, we propose an approach based on quadratic interpolation to the 
numerical evaluation of the composition of the left and right Riemann-Liouville 
integrals. The presented methodology is a fractional equivalent to the classical 
Simpson's rule [1]. We calculate errors and determine the experimental rate of 
convergence for the described approach. 

First, we will introduce definitions of fractional integral operators. The left and 
right fractional Riemann-Liouville integrals of order Rα +∈  are defined 
respectively (see [2]) 

 ( ) ( )
( )

( )1

1
: d , for

t

a
a

f
I f t t a

t
+

α
−α

τ
= τ >

Γ α − τ∫  (1) 

 ( ) ( )
( )

( )1

1
: d , for

b

b
t

f
I f t t b

t
−

α
−α

τ
= τ <

Γ α τ −∫  (2) 

where Γ  denotes the Gamma function. Fractional integral operators, which are a 
composition of the left and right fractional Riemann-Liouville integrals, look as 
follows (see [3])  

 ( ) ( ) [ ],1

,
: , for ,

a b a b
f t I I f t t a b+ − + −

α α α= ∈I  (3) 

 ( ) ( ) [ ],1

,
: , for ,

b a b a
f t I I f t t a b− + − +

α α α= ∈I  (4) 

The interval [ , ]a b  is divided into N  (even) sub-intervals 1[ , ]i it t + , for 

0,1,., 1i N= −  with a constant step ( ) /t b a N∆ = −  by using nodes it a i t= + ∆ . 
Next, we replace function f  by the quadratic polynomial, which takes the same 

values as f at the end points 2 jt  and  2 2jt + , and the midpoint 2 1jt +  
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+
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 (5) 

We put the interpolation (5) into expressions (1)-(4) and by the additivity of 
integration we get the approximations of analysed fractional operators. 

 
In Figure 1 we present numerical results for ,1

,
( )

a b
f tα

+ −I  for 0, 1a b= = , 

{0.4,0.6,0.8,1,1.5,2}α ∈  and the function ( )f t tα= . 

 

Fig. 1. Numerical evaluation of ,1

,10
( )f tα

+ −I  for different values of α . 

Keywords: fractional integrals, Simpson's rule 

References 

[1] Blaszczyk T., Siedlecki J., An approximation of the fractional integrals using quadratic 
interpolation, Journal of Applied Mathematics and Computational Mechanics 2014, 13(4), 13-
18. 

[2] Podlubny I., Fractional Differential Equations, Academic Press, San Diego 1999. 
[3] Blaszczyk T., Ciesielski M., Fractional oscillator equation - analytical solution and algorithm 

for its approximate computation, Journal of Vibration and Control 2016, 22(8), 2045-2052. 

  



Mathematical Modelling in Physics and Engineering 
 

27 
 

FACIAL ASYMMETRY IN 3D FACE RECOGNITION 

Janusz Bobulski 

Institute of Information and Computer Science, Czestochowa University of Technology,  
 Czestochowa, Poland 
januszb@icis.pcz.pl  

Introduction 

Biometrics systems use individual and unique biological features of person for 
user identification. The most popular features are: fingerprint, iris, voice, palm 
print, face image et al. Most of them are not accepted by users, because they feel 
under surveillance or as criminals. Others, in turn, are characterized by problems 
with the acquisition of biometric pattern and require closeness to the reader. 
Among the biometric methods popular technique is to identify people on the basis 
of the face image, the advantage is the ease of obtaining a biometric pattern. Low 
prices of cameras have caused their commonness and they are everywhere. 
Moreover, the quality of the images captured from modern cameras are so good 
that they may be used to retrieve biometric patterns, and then for identification. 
The advantage of the identification with the face image is the ease acquiring 
pattern and a high acceptance level of this method by users. There are many works 
on 2D face recognition [1], and made great progress in this field. Among these 
works there are also techniques that use the asymmetry of the face, and the 
efficiency of this technique is confirmed in articles [2-5]. 
With the development of 3D technology appeared methods of 3D face recognition. 
In last years, some of the new face recognition strategies tend to overcome face 
recognition problem from a 3D perspective. The 3D data points proper to the 
surface of the face give us other kind of information for recognition, and solve the 
problem of pose and lighting variations in case of 2D data. However, 3D images 
have their own problems, e.g. normalization, devices for acquiring faces, time and 
cost of faces getting [6]. In the literature, we may find a lot of useful reviews of 3D 
face recognition problem such as [7].  

Many works are dedicated to the 3D face recognition problem. There is the 
method presented by Riccio et al. [8] among them, that uses predefined key points. 
These points are used to indicate the several geometric invariants on the basis of 
which is made identification. Other method, Rama et al. present in article [9]. They 
propose Partial Principle Component Analysis (P2CA) for feature extraction and 
dimensionality reduction by projection 3D data into cylindrical coordinate. In [10], 
researchers use the iterative closest point (ICP) to adjust the 3D surface points of  
a face and then realize the recognition based on the minimum distance between the 
two faces . These methods have high recognition rate, but their main problem is 
speed and computational complexity. 
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Using of 3D images for the identification was in a field of the interest of many 
researchers which developed a few methods offering good results [11]. However, 
there are few techniques exploiting the 3D asymmetry amongst these methods. The 
reason for this is, among others, the problem of obtaining 3D images. The cost 3D 
camera is still higher than traditional camera and therefore their popularity and 
prevalence is lower. The second major problem in the processing of 3D images is 
their quality. Imperfection devices for image acquisition cause errors in the 
measurements and data discontinuity, that is a significant problem in the further 
processing of the data. At the present moment, however, we need to use the data in 
the quality of such is, and try to eliminate the disadvantages of these data and 
develop more effective methods of asymmetry measurement and face recognition 
based on asymmetry. 

Few papers in the literature are dedicated to the 3D asymmetry face recognition 
task so far. Huang et al. [12] propose method based on Local Binary Pattern (LBP). 
Their approach splits the face recognition task into two steps: (1) a matching step 
respectively processed in 2D/2D; (2) 3D/2D a fusion step combining two matching 
scores. Canonical Correlation Analysis (CCA) is applied in method propose by 
Yang et al. [13]. They apply CCA to learn the mapping between the 2D face image 
and 3D face data, and only 3D data is used for enrolment and recognition. 
This article presents face recognition method based on 3D face asymmetry. We 
propose fast algorithm for rough extraction face asymmetry that is used to 3D face 
recognition with hidden Markov models (HMM) [14]. 

PROPOSED METHOD 

The pre-processing procedure of the system consists of the following steps: 
selection of face area, scaling image, rotation. The main area of the face selected 
and rejected areas that contain little useful information on the outskirts of face. The 
selection of face area made based on key points, and the coordinates of these points 
are obtained from database. Based on inner corners of the eyes, the face image is 
scaled so that the distance between them was equal to 120 pixels. Next, the angle 
of rotation is calculated from the mentioned coordinates, and face image is rotated 
by an angle alpha. This operation is aimed at establishing the identical position for 
all faces. 

Measurement of the asymmetry 

There are many methods to found vertical line of face asymmetry. Ostwald et 
al. [15] propose a definition of the line asymmetry so that the differences between 
the face and its mirror reflection are as low as possible. Other method is proposed 
by Kurach et al.[16]. They propose to appoint line asymmetry in such a way that 
the differences between the left and right part of the face are as small as possible. 
We propose simple and fast method of designate the line of asymmetry. The 
coordinates of key points obtained from database exploit to find the centre of line 
connecting the inner corners of the eyes. Thus obtained value is used to determine 
the x-coordinate defining the lines of facial asymmetry. 
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In this way we are dividing the face into the right and left part. Through the mirror 
vertically they are rising from these parts right face (RF) and left face (LF). From 
z-coordinate of these two elements and the normal face (NF) the measurement of 
the asymmetry is being made. In this way, the three metrics are formed that are 
differences between the RF, LF and NF (eq.1-3).  

LN= |LF - NF|      (1) 

RN= |RF - NF|      (2) 

LR= |LF - RF|      (3) 

 

Fig. 1. Results of the measurement of the face asymmetry 
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Recognition system 

We have two basic tasks in face recognition application: learning and testing. In 
case of HMM [17], first task is made with Baum-Welch algorithm, that is based on 
the forward-backward algorithm. Second task may be made in some ways, but we 
chose forward algorithm.\\ 
Forward Algorithm [18]: 
Define forward variable ( )tjα  as: 

( ) ( ) ( )r
tj

N

j
ijij obatt 







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−

=

1

2

1αα     (4) 

Backward Algorithm [18]: 
Define backward variable ( )tiβ as: 

( ) ( ) ( )∑
−

=
+ +=

1

2
1 1
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j
j

r
tjiji tobat ββ     (5) 

Baum-Welch Algorithm [18]: 
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ξ
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+ + + +

+ +
= =

= =
∑∑

 (6) 

Experiments 

In experiments we used the image database UMB-DB. The University of 
Milano Bicocca 3D face database is a collection of multimodal (3D + 2D colour 
images) facial acquisitions. The database is available to universities and research 
centres interested in face detection or face recognition. They recorded 1473 images 
of 143 subjects (98 male, 45 female). The images show the faces in variable 
condition, lighting, rotation and size [19]. 
We chose three datasets, each consist of 50 persons in order to verify the method, 
and for each individual chose two images for learning and two for testing. The 
HMM implemented with parameters N = 10, O = 20. Table 1 presents the results of 
experiments. 
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Table 1. Results of experiments 

Type of asymetry No. of test set Recognition rate [%] 
LN 1 58 
LN 2 62 
LN 3 60 

Average 60 
RN 1 58 
RN 2 60 
RN 3 62 

Average 60 
LR 1 68 
LR 2 70 
LR 3 72 

Average 70 

 

Table 2. Comparison to other methods 

Method Recognition rate [%] 
LBP 82 
CCA 68 
Our 70 

Conclusion 

This paper presented conception of fast and rough method for determines 3D 
face asymmetry. Presented method allows for faster 3D face processing and 
recognition because they do not use complex calculation for features extraction. 
The obtained results are satisfactory in comparison to other method and proposed 
method may be the alternative solution to the others. Experiments confirmed the 
validity of the concept of 3D face asymmetry, and it is a faster method in 
comparison to another. The research results indicate that face recognition with 3D 
face asymmetry may be used in biometrics systems. 

Keywords: face 3D, facial asymmetry, face recognition 
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The subject of considerations are linear systems of algebraic equations of  
a tridiagonal Toeplitz type. The subsequent analysis will be restricted to the 
systems which have the unique solutions. We are to compare the two methods: 
approach based on linear recurrences and Thomas algorithm. First of them was 
proposed for the general tridiagonal system in [1] where the corresponding 
recurrence equations are shown. Thomas algorithm is well known in literature, 
[2,3]. 
A linear algebraic tridiagonal Toeplitz system for n unknowns has the form 

 

1 2 1

1 1

1

, 2,..., 1k k k k

n n n

ax cx d

bx ax cx d k n
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 (1) 

We start with approach based on linear recurrences which is given in [1]. In 
order to apply this method it is convenient to represent system (1) by the 
corresponding matrix equation 

 dxA =⋅n  (2) 
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Let us denote by nW  the determinant of the matrix nA . As we consider the system 

which has the unique solution, we must to assume that 0≠nW . It can be pointed 
out that first of the presented methods doesn’t impose any additional conditions on 
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elements of matrix nA . Bearing in mind [1] we conclude that in order to obtain 
solution to system (1) we need to solve three linear recurrence equations. We start 
with determinant nW  which satisfy second order homogeneous recurrence equation 

 2,021 >=+− −− nbcWaWW nnn  (3) 

together with initial conditions 
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Afterwards we calculate 1x
nW  which is the determinant of the matrix obtained from 

matrix nA  by replacing elements of its first column by the corresponding elements 

of the vector d . Determinant 1x
nW  satisfies second order nonhomogeneous linear 

recurrence equation of the form 
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together with initial conditions 
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At the end we come to the algebraic linear system of equations (1). Unknowns kx , 
k=1,2,…,n of this system satisfy the second order nonhomogeneous linear 
recurrence equation of the form 

 121 −−− =++ kkkk dbxaxcx  (7) 

together with initial conditions 
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Now, we go on Thomas method. Bearing in mind [2] we conclude that solution to 
system of linear equations (1) can be obtained in two steps. Firstly we calculate 
coefficients kk βα ,  from the system of recurrence equations 
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with initial conditions 
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Secondly, we calculate unknown kx  of the system (1). It can be proved that kx , 
nk ,...,2,1= , satisfies the recurrence relation of the form 
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It can be underline that Thomas algorithm is not stable in general. It can be 
successfully used when the matrix nA  is diagonally dominant or symmetric 
positive definite, [2]. The characterization of stability of this algorithm can be 
found in [3]. 

Now, let as illustrate the two above presented approaches by a certain special 
case. To this end let as assume that 3=a , 1=b , 2=c , kdk = , nk ,...,1= . So, we 
consider the system of the form 

 








=+
−==++

=+

−

+−

nxx

nkkxxx

xx

nn

kkk

3

1,...,2,23

123

1

11

21

 (12) 

Solution to the system (12) by using of approach based on linear recurrences was 
presented in [1]. There was obtained the closed form for unknowns nkxk ,...,2,1, =  
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 (13) 

Now, let us apply the Thomas algorithm in order to solve system (12). It can be 
seen that this approach doesn’t enable to obtain the closed form of solution. We are 
to implement the Thomas algorithm to the proper computer program, for example 
to Maple. Let us assume that the number of unknowns in system (12) is equal 
1000. We write in Maple the following syntax  
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It can be pointed out that we have obtained the same values of kx , 1,2,...,1000k =
when we have used the formula (13). The advantage of first of the proposed 
methods is that it enables us to obtain solution in the compact form.  
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equation 
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The paper presents one of the algorithm for facial detection and recognition 
called the Eigenfaces method. Face recognition systems are based on the 
assumption that each person has a specific face structure, meaning any faces 
possess characteristic features. These characteristic features are called eigenfaces 
because they are the eigenvectors (principal components) of the set of faces. We 
can extract them from the original face image using mathematical tool called 
Principal Component Analysis (PCA). The idea of using PCA to represent human 
faces was developed by Sirovich and Kirby in [1] and used by Turk and Pentland to 
detection and recognition of faces (see [2] and [3]). 

The Eigenfaces method uses the PCA in regard to image processing but requires 
much more calculation than the processing of statistical data. Therefore the 
Eigenfaces method includes a number of modifications that adapt the PCA 
algorithm to efficiently processing such large data sets. Using PCA technique we 
can transform any original face image from the training set into a corresponding 
eigenface. Recognition occurs by projecting a new unknown face image into the 
subspace spanned by the eigenfaces. This subspace is called "face space". Then we 
can classify the face by comparing its position in face space with the faces position 
of the training set. 

We assume that any face image consists of � pixels. So we can present any 
image as an array of � × �. We may also consider that the face image is a vector 
(or point) of dimension ��. We can reconstruct each original face image of the 
training set as the linear combination of eigenfaces. So we can say that the original 
face image can be reconstructed from eigenfaces if we add all the eigenfaces 
(features) in the right proportion. Any eigenface represent only some features of the 
face, which may or may not be present in the original face image. If the particular 
feature is present in the original face image to a higher degree, the eigenface has 
greater coefficient in the linear combination. Otherwise, if the feature is not (or 
almost not) present in the original face image, the corresponding coefficient should 
be smaller (or be equal zero). This means that the original face image is the 
weighted sum of all eigenfaces. We can reconstruct the original image face from 
the eigenfaces exactly, using all the eigenfaces extracted from the original image. 
But we can also use only a part of the eigenfaces. Then we get an approximation of 
the original face image. Due to the shortage of computional resources, it is 
necessary to omit some eigenfaces.  
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The algorithm of the facial recognition presented in [4] by Pissarenko is as follow: 

1. Transform the original images from the training set into a set of eigenfaces �. 
2. Calculate the weights for each image from the training set and store in the set �. 
3. Input the new unknown face image �. 
4. Calculate the weights for new face image � and store in the vector �	. 
5. Compare �	 with the weights of the training set �, calculating an average 
distance 
 between � and �	 (the Euclidean distance). 
6. If the average distance exceeds a certain threshold value �, we can assume that 
the unknown face image X is not a face. 
7. Otherwise, the unknown face image X is actually a face. Then weight vector �	  
and the face image � are stored for later classification. 
 

 
Fig. 1. Face recognition algorithm. Source: [4]. 
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The interpolation formulas by polynomials are a basic and fundamental topic in 
approximation theory with many application. The main aim of this paper is a new 
formula of tensor interpolation by polynomial of two variables. The formulas for 
interpolating polynomial coefficients are obtained by using the Kronecker tensor 
product of matrices. 
We consider the quadratic matrices  j

iX X =     and  l
kY Y =   ,  0 ,i j p≤ ≤   and 

0 ,k l q≤ ≤ ,  then the polynomial tensor interpolation formula can be formulated as 
follows 
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The symbol  ( )0 1
ˆ,... ,...p i j pX X X− −τ   describes the fundamental symmetric 

polynomial of rank   1p −  of the variables 0 1
ˆ,... ,...j pX X X − , and  ˆ

jX  means 

omitting the variable jX .  We assume 0 1τ = . 
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Heat transfer processes can be described using the Fourier and non-Fourier heat 
conduction models. The application of the Fourier heat transfer model is not 
recommended when the thermal processes proceed in the micro-domain of thin 
metal film subjected to a strong laser pulse. During heating of the thin metal film 
occur the extreme temperature gradients in the domain and the extremely short 
duration of the processes. In this case, the non-Fourier models, i.e. the dual phase 
lag model (DPLM), are proposed [1]. 

In the paper, the following heat transfer equation (a general form) in the finite 
1D domain oriented in the Cartesian co-ordinate system is considered [1] 

( ) ( ) ( ) ( ) ( ) ( )2 2 3

2 2 2

, , , , ,
,q T q

T x t T x t T x t T x t Q x t
c Q x t

t t x t x t

   ∂ ∂ ∂ ∂ ∂
ρ + τ = λ + τ + + τ      ∂ ∂ ∂ ∂ ∂ ∂   

(1) 

where T is a temperature, c, ρ, λ denote the specific heat, mass density and thermal 
conductivity, τq is a relaxation time (the phase lag of the heat flux), while τT is 
a thermalization time (the phase lag of the temperature gradient), x, t are the 
geometrical co-ordinate and time. The function Q(x, t) is the internal heat source 
which is generated inside the domain, as the effects of the femtosecond laser pulse 
irradiation on the metal film surface (the energy is fed into the domain interior and 
its absorption takes place) and is defined by 

 ( )
2

0

21
, exp p

p p

t tR x
Q x t I

t t

  −β −  = − − β   π δ δ   

 (2) 

where I0 is a laser intensity, R is a reflectivity of an irradiated surface, δ is an 
optical penetration depth, β = 4 ln2 and tp is a characteristic time of laser pulse.  

Depending on the parameters τq and τT, three types of Eq. (1) are derived and 
discussed in this work: 

1. τq = 0, τT = 0 (the case corresponding to the Fourier-type heat conduction), 
2. τq > 0, τT = 0 (the case corresponding to the hyperbolic Cattaneo-Vernotte model 

for heat conduction), 
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3. 0 < τq < τT (the case corresponding to DPLM and the assumption that τq < τT is 
quite acceptable in the case of metals). 

Eq. (1) is supplemented by the appropriate boundary and initial conditions. The 
initial conditions are given as 

 ( ) ( ) ( ) ( )0 10
0

,
,    and for the case of 0 :  qt

t

T x t
T x t T x T x

t=
=

∂
= τ > =

∂
 (3) 

while on the boundaries of the domain of thickness L, the adiabatic conditions are 
assumed  
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 (4) 

In paper, the considerations concerning the exact analytical solutions of three 
types of above equations will be presented and discussed. To obtain these solutions, 
the combination of the variables separation method and the Green’s function is 
used [2, 3]. Also, for all types of equations, the numerical solutions based on the 
control volume method (CVM) (the implicit, explicit and the Crank-Nicolson 
schemes) will be presented. From a practical point of view, the interesting thing is 
the comparison of the numerical results obtained for different sizes of meshes with 
the results of the analytical solutions of these equations.  
In the final part of the paper, the examples of computations (the results obtained 
using analytical as well as numerical solutions) will be shown. The solution results 
for different types of equations and for different thermophysical parameters of the 
considered metals will be compared. Also, the errors between the exact and 
numerical solutions will be presented and analysed. 

Keywords: dual phase lag equation, laser heating process, analytical solution, 
numerical solution 
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In recent years, a series of metrics began to develop that allow the 
quantification of specific properties of process models. These characteristics are, 
for example, complexity, comprehensibility, maintainability, cohesion and 
uncertainty. This work is focused on defining a method that allows to measure the 
uncertainty of process models that was modelled by Stochastic Petri Nets (SPN). 
Principle of this method consists in mapping the set of all reachable marking of 
SPN into the continuous-time Markov chain and then calculating its steady-state 
probabilities. The uncertainty is then measured as the Shannon entropy of the 
Markov chain (it is possible to calculate the uncertainty of the specific subset of 
places as well as whole Petri net). Alternatively, the uncertainty is quantified as  
a percentage of the calculated entropy against maximum entropy. 

1. Introduction and related works 

It has been known for long time that within development, the change of 
processes are uncertain and interconnected (Hirschman, 1967; Simon, 1972; 
Brinkerhoff and Ingle, 1989). Complexity and uncertainty have become critical 
issue for modelling applications, opening new ways for the use and development of 
models. Increasingly models are being recognised as essential tools to learn, 
communicate, explore and resolve the particulars of complex, for example 
environmental, problems (Sterman, 2002; Van den Belt, 2004, Brugnach 2008). 
However, this shift in the way in which models are use has not always been 
accompanied by a concomitant shift in the way in which models are conceived and 
implemented. Too often, models are conceived and built as predictive devices, 
aimed at capturing single, best, objective explanations. Considerations of 
uncertainty are often downplay and even eliminated because it interfered with the 
modelling goals. When modelling and analysing business processes, the main 
emphasis is usually on the validity and accuracy of the model, that means, the 
model meets the formal specification and also models the correct system. In recent 
years, a number of measures have begun to develop, enabling quantification of the 
specific features of process models. These characteristics are, for example, 
complexity, comprehensibility, maintainability, coherence, and uncertainty. The 
work is aimed at defining a method that allows to measure the uncertainty of 
process models that was modelled using the stochastic Petri nets (SPN). The 
principle of this method consists of mapping the reachable SPN markings into  
a continuous Markov chain, and then calculating the stationary probabilities of 
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markings. Uncertainty is then measured as the entropy of the Markov chain (it is 
possible to calculate the uncertainty of a specific subset of sites as well as the entire 
network). Alternatively, the uncertainty index is quantified as a percentage of the 
calculated entropy versus the maximum entropy (the resulting value is normalized 
to the interval  <0.1>). Calculated entropy can also be used as a measure of model 
complexity (Ibl and Čapek 2016). 

Uncertainty 
A realistic modelling and simulation of complex systems must include the 

nondeterministic features of the system and the environment. By 
'nondeterministic' we mean that the response of the system is not precisely 
predictable because of the existence of uncertainty in the system or the 
environment, or human interactions with the system (Oberman 2001). Fig.1 
shows relationship between uncertainty, data and model.  

 

Fig.1 Uncertainties, Data and Models (according Carpertner (2006)) 

In a measurement, the uncertainty is quantified as a doubt about the result of 
the measurement. Measurement device outputs are data displaying information 
about the measured quantity. Entropy (or uncertainty) and information, are perhaps 
the most fundamental quantitative measures in cybernetics, extending the more 
qualitative concepts of variety and constraint to the probabilistic domain. Variety 
and constraint, the basic concepts of cybernetics, can be measured in a more 
general form by introducing probabilities. Assume that we do not know the precise 
states of a system, but only the probability distribution P(s). Variety V can be then 
expressed as the Shannon entropy H:  

( ) ( ).log ( )
s S

H P P s P s
∈

= −∑  
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H reaches its maximum value if all states are equiprobable, that is, if we have 
no indication whatsoever to assume that one state is more probable than another 
state. Like variety, H expresses our uncertainty or ignorance about the system's 
state. It is clear that H = 0, if and only if the probability of a certain state is equal to 
1 (and all other states are equal to 0). In that case, we have maximal certainty or 
complete information about what state the system is in. We define constraint that 
reduces uncertainty, i.e. the difference between maximal and actual uncertainty. 
This difference can also be interpreted in a different way, as information. Indeed, if 
we get some information about the state of the system (e.g. through observation), 
then this will reduce our uncertainty about the system's state, by excluding or 
reducing the probability of a number of states. The information we receive from an 
observation is equal to the degree to which uncertainty is reduced. 

For uncertainty identification is possible to use the Ishikava fishbone diagram, 
see Fig. 2. 

   

 

Fig. 2 Fishbone diagram (Source: MoreSteam (2013)) 

Dr. Kaoru Ishikawa developed the “Fishbone Diagram” at the University of 
Tokyo in 1943. Hence, the Fishbone Diagram is frequently referred to as an 
"Ishikawa Diagram” The diagram is used in process improvement methods to 
identify all of the contributing root causes likely to be causing a problem. The 
Fishbone diagram is an initial step in the screening process. After identifying 
potential root cause(s), further testing will be necessary to confirm the true root 
cause(s). This methodology can be used on any type of problem, and can be 
tailored by the user to fit the circumstances. Ishikawa, K., (1989). The example we 
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have chosen to illustrate is "Missed Free Throws" (the one team lost an outdoor 
three-on-three basketball tournament due to missed free throws) MoreSteam 
(2013). In manufacturing settings, the categories are often: Machine, Method, 
Materials, Measurement, People, and Environment. In service settings, Machine 
and Method are often replaced by Policies (high-level decision rules), and 
Procedures (specific tasks). 

2. Petri net 

A gentle introduction into Petri nets modelling approach is made for example by 
WoPeD (WoPeD 2005) where Petri nets are described as follows: “Petri Nets are  
a graphical and mathematical modelling notation first introduced by Carl Adam 
Petri's dissertation published in 1962 at the Technical University Darmstadt 
(Germany). A Petri Net consists of places, transitions, and arcs that connect them. 
Places are drawn as circles, transitions as rectangles and arcs as arrows. Input arcs 
connect places with transitions, output arcs connect transitions with places. Places 
are passive components and model the system state. They can contain tokens, 
depicted as black dots or numbers. The current state of the Petri Net (also called the 
marking ) is given by the number of tokens at each place. Transitions are active 
components that model activities that can occur and cause a change of the state by 
a new assignment of tokens to places. Transitions are only allowed to occur if they 
are enabled, which means that there is at least one token on each input place. By 
occurring, the transition removes a token from each input place and adds a token to 
each output place. Due to their graphical nature, Petri Nets can be used as  
a visualization technique like flow charts or block diagrams but with much more 
scope on concurrency aspects. As a strict mathematical notation, it is possible to 
apply formal concepts like linear algebraic equations or probability theory for 
investigating the behaviour of the modelled system. A large number of software 
tools were developed to apply these techniques. 

Examples of properties that are widely verified on Petri's networks are liveness, 
boundedness, reachability, fairness, and others. Verification of individual properties 
may be analytical (for basic classes of Petri nets) or have simulation character (for 
higher classes of Petri nets). The other way of development was to broaden the 
basic definition of the Petri nets so that their modelling power complies with 
specific requirements. Examples include timed and stochastic Petri nets, which 
allow refinement of individual states changes with deterministic (Dorda 2008, 
Zuberek, 1991, Holliday and Vernon, 1987) or stochastic (Ajmone Marsan, 
1990)time considerations. 

3. Example 

As an example,according (Ibl and Čapek 2016), is presented a stochastic Petri 
net consists of 5 places and 5 transitions, see Fig. 3. The model contains the 
essential characteristic features that are included in the process model. These 
elements are, for example, the sequence (e.g., transition T4), AND-split (transition 
T1), AND-join (transition T6), XOR (transitions T6 and T5 or T6 and T3). 
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Fig. 3 Example of a stochastic Petri net 

The set of all reachable markings 0( )R M  of this example Petri net contains 
5 markings: 

0 1 2 3 4

1

2

3

4

5

1 0 0 0 0

0 1 0 1 0

0 1 1 0 0

0 0 1 0 1

0 0 0 1 1

M M M M M

p

p

p

p

p

 

With consideration of transition firing rates, for example, 

1 2 3 4 5 6Λ ( , , , , , )λ λ λ λ λ λ= ,   the given net is shown in Fig. 4 as a Markov chain.  

 

Fig. 4 Corresponding Markov chain 
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The solution of this chain, for ( )Λ 5,2,3,3,2,1=  is stationary probability vector: 

0.0385

0.2692

0.1538

0.3462

0.1923

η

 
 
 

=  
 
 
  

 

The entropy of the example network can then be expressed by: 

( ) 2

2 2

2 2

(0.0385log .0385

                     0.2692log 0.2692 0.1538log 0.1538

                     0.3462log 0.3462 0.1923log 0.1923) 2.093

0H SPN = −
+ +
+ + =

 

Reference limit (maximum entropy) is in this case is 2log 5 2.3219= − . The 
uncertainty for this particular case is determined by the relation 

2 0( ) / log ( )H SPN R M− , i.e. 2.093 / 2.3219 0.9015= . This result can be loosely 

interpreted as the fact that the uncertainty of the example stochastic Petri net (SPN)  
reaches 90.15%. 
Uncertainty can be then analysed as a response to changes in a parameter of SPN, 
for example, the number of tokens in the initial marking or an adjustment of a 
specific parameter λ ∈Λ . In the following is presented an example that shows the 
development of the uncertainty with a different initial marking. Fig. 5 indicates that 
the increasing number of tokens in the initial marking (in the place p1) decreases 
the uncertainty of SPN. 
 

 

Fig. 5 Uncertainty vs. number of tokens 

U
nc

er
ta

in
ty

(S
P

N)

M0(p1)



Mathematical Modelling in Physics and Engineering 
 

51 
 

4. Conclusion 

Measurement of uncertainty can be an appropriate tool for assessing the 
relevance and the predictability of process models, and thus serve to more effective 
managerial decision making. The degree of uncertainty in the process model is 
directly dependent on two main indicators. The first is the number, the ratio and the 
distribution of specific elements (OR, XOR, AND, and LOOP) in the model. These 
elements provide branching, synchronization and cycles in the model, and thus are 
the main building blocks of process models that shape its specific structure. One of 
other approaches to the measurement of uncertainty in the process model (Jung et 
al., 2011)is based on quantifying the entropy of partial substructures of the model 
at different levels of abstraction. However, this approach takes into account only 
static structure of the model and does not take into account dynamic component, 
which can be expressed in Petri nets using tokens. 

Keywords: uncertainty, entropy, modelling, stochastic Petri nets 
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The phenomena of failure and fracture of materials are a complex collection of 
phenomena in science and engineering. For the reason of the disorder in materials 
and their inherent nonuniformity, the failure processes of real materials usually 
cannot be described by simple linear equations. Therefore, statistical models are 
widely used to study the fracture and breakdown processes. One of the most 
important theoretical approaches is the fibre bundle model (FBM) [1-2], which 
illustrates a stochastic fracture-failure process in disordered materials subjected to 
external load. The crucial aspect of the FBM is a load transfer rule which is 
responsible for the mechanism of redistribution of load carried by the broken fibres 
(elements) to the intact ones. The load sharing rules can be divided into two 
extreme classes: global load sharing (GLS) and local load sharing (LLS). In the 
GLS model, long-range interactions are assumed as all the intact elements equally 
share a load of a failed element. The LLS model represents short-range interactions 
– the load from the destroyed element is redistributed only to its nearest intact 
neighbours. Both of these rules are idealised cases, hence Pradhan et al.[3] 
proposed mixed-mode load sharing rule and explored it for one-dimensional case.  

In this work, using the mixed-mode FBM, we analyse damage processes in 
arrays of vertical nanopillars distributed on a flat substrate. Pillars are located at 
sites of two-dimensional lattices. Only regular arrangements are analysed.  

Consider an array of N longitudinal pillars subjected to an axial external load. 
The existence of defects in actual materials plays a key role in the mechanical 
response of materials under load. Hence, pillar-strength-thresholds i

thσ , Ni ,..,2,1=  
are quenched random variables distributed according to Weibull distribution: 

 ( )



















−−=
ρ

λ
σσ th

thP exp1 . (1) 

The mixed-mode load transfer is as follows. When a pillar fails, fraction g  of its 

load is transferred locally and the rest (g−1  fraction) is distributed globally. 
Therefore, the mixed-mode load sharing is an interpolation mechanism between the 
GLS and LLS – 0=g  corresponds to the GLS rule and 1=g  represents pure 
LLS rule. 
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Loading process is realized by two different (but also equivalent) procedures: 
sudden loading (application of finite force) and quasi-static loading. These two 
loading ways allows us to find crossover between GLS regime and LLS regime. In 
order to find crossover we study critical loads NFcc /=σ  and probability of 

breakdown bP  under given load.  

It is known that for the GLS rule cσ  follows normal distribution, while for the 

LLS rule the distribution of cσ  can be well fitted by the skew normal distribution 

(SND) with cumulative distribution function:  

 ( ) 1
erfc 2T ,

2 2
cP

σ ξ σ ξσ α
ωω

− −   = − −   
  

. (2) 

SND is a generalization of normal distribution for non-zero skewness.  
Distributions of cσ  have been fitted to SND for different values of g . We have 

observed that values of α  are significantly closer to zero for 6.0≤g  than for 

7.0≥g . In addition, for 7.0≥g  all values of α  are negative. This suggest that 

for the 6.0≤g  the GLS mode dominates and for the 7.0≥g  short range 

interactions dominate, while ( )7.0,6.0∈g  constitutes crossover. 

Keywords: array of pillars, load transfer rule, probability a nd statistics, crossover, 
critical load 
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The mechanism of in-flight navigation during the seasonal movement of 
migratory birds has been puzzling researchers for a long time. Since the early 
1970s, there is evidence that birds are able to use the Earth’s magnetic field as their 
compass [1]. At present, there is a prevailing opinion that there are two types of 
magnetodetection: based on iron-containing structures in the beaks like for  
a homing pigeon or based on a chemical sensor in the bird’s eye like for the 
European Robin [2]. In the latter case, there is a hypothesis that these birds exploit 
the quantum correlations to navigate in Earth magnetic field. This phenomena 
could be based on magnetically sensitive chemical reactions in a bird eye. But how 
can it be reconciled with the facts that quantum effects, like superposition and 
entanglement, are easily destroyed by interaction with the environment? 
 Generally, quantum phenomena have been observed at low temperatures in both 
microscopic and macroscopic systems. Presently, it seems that the effects can also 
occur at high temperatures if the systems are not in thermal equilibrium [3]. 
Decoherence due to contact with a hot environment typically restricts quantum 
phenomena to the low temperature limit, kBT/gμBB≪ 1 (gμBB is the single particle 
Zeeman energy where μB is the Bohr magneton, kB is the Boltzmann constant, and 
g is the Landé g-factor). But when a system is not in thermal equilibrium, the 
temperature no longer provides the relevant energy scale! 
 The main parameters of the Earth’s magnetic field are inclination, declination 
and total intensity. The intensity is relatively very weak varying from 
about 30 μT near the equator to about 60 μT at the poles. But the avian magnetic 
compass was found to be an inclination compass based on the inclination of the 
Earth’s magnetic field lines instead of pointing to north or south. 
 In 2000 Ritz et al. proposed a comprehensive model of chemical 
magnetoreception, so called, the Radical Pair Model [4]. European Robins are 
supposed to have a (blue) light-dependent magnetic compass based on the 
photochemical creation of radical pairs (two electrons located on different 
molecules) in photoactive pigment. It was proposed that the retinal cells of the bird 
eye seem to be the most suitable locations for the radical pair mechanism. 
Chemical reactivity of the radical pair is determined by the relative alignment of 
the two electron spins at any given time. Before radical pair of electrons 
recombines their correlated spins are in the superposition of singlet (SI) or triplet 
(TR) states. While both electron spins interact with the Earth’s magnetic field, one 
of them additionally interacts with a nuclear spin which leads to different local spin 
environments. Due to it coherent quantum oscillations between entangled singlet 
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and triplet states appear and, moreover, their time evolution is very sensitive to the 
inclination of the molecule with respect to the Earth’s magnetic field. Therefore, 
one can expect that the rate constants kSI and kTR related do the decay of both states 
into a singlet or triplet state have different values, leading to different relative 
concentration of product states. In turn, a different concentration of both chemical 
products may modulate either sensitivity of photoreceptors or affect the light 
response of some cells. As a result light responses from different parts of the retina 
would be different depending on alignment of a photoactive cell relative to the 
magnetic field vector. In this way a visual pattern of light and shade, appearing in 
the bird's field of view, provides orientation information. 
 The predictions of the radical-pair mechanism are consistent with many 
theoretical [5,6,7] and experimental results. For example, it has been verified that  
a very small oscillating magnetic field can disrupt the bird’s ability to orientate [8]. 
 The duration of quantum entanglement in the bird’s eye is surprisingly long. It 
demonstrates that the evolution has preserved quantum effects to ensure 
optimization of some biological functions critical for survival [9]. It is also 
believed that the quantum avian compass can provide the foundation for a new 
generation of selective magnetic-sensing nano-devices. 
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In this paper we present the definition of total variation and show the most 
important properties and applications of bounded variation functions. The concept 
of bounded variation functions was first introduced by Camille Jordan             
(1838-1922). Many other mathematicians expanded this issue and showed a lot of 
applications of bounded variation functions in different fields of mathematics,      
i.a. calculus of variations, geometric measure theory, mathematical physics. 
Moreover, functions of bounded variation have a wide range of applications           
in calculus, particularly in Riemann–Stieltjes integral. 

Definition 1 

Let 
 be a function defined on an interval [�, �]. Let us part the given interval         
as follows: � = �� < �� < ⋯ < �� = � and determine the quantity 

����
� = sup !|
��#� − 
��#%��|�

#&�
,  

where the supremum runs over all finite partitions ( of the interval [�, �].          
The quantity ����
� is called the total variation of 
 on the interval [�, �]. 
Definition 2 

If  ����
� < ∞, then the function 
 is said to be of bounded variation on [�, �]. 
Properties of bounded variation functions: 

1. For any BV function we have 

|
�b� − 
�a�| ≤ ����
�. 

2. A function of bounded variation on an interval [�, �] is bounded on the 
given interval. 

3. A sum, a difference and a product of bounded variation functions is 
a function of bounded variation. 

4. Let 
: [�, �] → / be a function of bounded variation and let 0 ∈ /.  
Then a function 0
 is a function of bounded variation too. Furthermore 

����0
� = |0|����
�. 
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5. A total variation is an additive function of the interval [�, �], i.e.: 

����
� = ��2�
� + ��2�
�, where � < 4 < �. 

6. If a function 
��� is bounded variation function on an interval [�, �], then 
for any � ≤ � ≤ � a total variation 

5��� = ��6�
�7�� 

is a bounded and increasing function of variable x. 

In the further part of this work there are criteria for existence and uniqueness of 
bounded variation functions, relationship between functions of bounded variation 
and the other classes of functions (continuous functions, monotonic functions, 
lipschitz functions) and applications of bounded variation functions. 
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 In order to achieve the desired topology we often have to remove material of the 
area considered. This work presents the author's algorithm which can be used in the 
reconstruction of the boundary of domain after elimination of a certain amount of 
material. The paper presents some details concerning creating holes inside the area 
and removing the nodes. The topological-shape sensitivity method  for the Laplace 
equation is used to obtain an optimal topology, whereas numerical methodology 
utilizes the boundary element method [1-4]. The topological derivative gives the 
information on the opportunity to create a small hole in the domain of interest. 
Wherever the value of topological derivative is low enough, the material can be 
eliminated. On the holes created via topological derivative, the Neumann boundary 
condition is prescribed. 
In order to find the desired optimal topology of the domain considered, the iterative 
procedure is used. 

To check the effectiveness of the proposed algorithm, the example of 
computations is presented. The Laplace equation supplemented by the boundary 
conditions is taken into account (Fig. 1). The square domain of dimensions 0.1×0.1m 
is considered. Thermal conductivity equals λ=1 W/(mK). The boundary conditions 
are marked in  Figure 1. 
 

 
 Fig. 1. Domain considered 

The final result is obtained at iteration i=21, as can be seen in Figure 2.   
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Fig. 2. Final result 

The obtained results of the study show good agreement with the available 
literature.  
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The goal of this paper is to create an optimal shape of the 2D domain that is 
described by the Non-Uniform Rational B-Splines (NURBS) curves. This work 
presents a method based on the topological derivative for the Laplace equation that 
determines the sensitivity of a given cost function (the total potential energy) to the 
change of its topology. The local value of the DT  is defined as follows   

0

( ) ( )
( ) lim

( )TD x
f

ε
ε

ψ ψ
ε→

Ω − Ω
=                                        (1) 

where ( )ψ Ω and ( )εψ Ω are the cost functions calculated for the original Ω and the 

new domain εΩ , respectively, and  f  is a regularizing function. In this work, the 
definition called the topological – shape sensitivity method is adopted  
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where δε is a small perturbation on the radius of the hole. 
Topological optimization is a mathematical method that allows one to find an 

optimal material layout of a domain, such that a cost function gives its optimum 
value after optimization under given constraints. Material is removed by creating a 
small hole that appears in the optimization process. The topological derivative (DT) 
indicates the position in the domain of interest where a hole should be formed. 
Wherever DT is low enough, a hole is created [1-4]. In the opening, the Neumann 
condition is taken into account. As a numerical approach, the boundary element 
method is considered in its direct version [5,6]. The boundary of the domain is 
described by the NURBS curves which are commonly used for representing and 
designing a shape in numerical implementation [7]. 

The following numerical example is considered  
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where εΩ be the domain with a small hole, x = (x1, x2) are the spatial coordinates, λ 

[W/mK] is the thermal conductivity, Tε (x) denotes the temperature, ∂Tε  /∂n is the 
normal derivative, n =[cosα1, cosα2]  is the normal outward vector. Tb  and  qb are 
known as the boundary temperature and heat flux, respectively. T∞ is the ambient 
temperature and α [W/m2 K] is the heat transfer coefficient. On the holes Hε  created 
via DT, the Neumann boundary condition is prescribed.The proposed approach 
confirms an effective the BEM coupled with the NURBS curves and the DT 
implementation for the design of an optimal topology of the domain considered 
applied in the heat transfer process modelling.  

Keywords: Laplace equation, boundary element method, topological derivative, 
NURBS curves 
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This paper discusses some of the issues related to the implementation of the 
software which is responsible for the gait generation process for simple four-legged 
walking machine. It has been suggested to use additional software elements, 
include those which allow to track the position of the key points of the structure 
during its movement and to use of collected data to implement the appropriate 
correction factors. The analysed quadruped walking machine is shown in Fig. 1. 
The main functionality of the additional software module was based on methods 
and algorithms related to image processing and analysis. The vision analysis was 
conducted in two steps. The first step was focused on the study of the correctness 
of transfer of motion by the system of links used in the limbs of the robot. While 
the second one was responsible for verifying the movement of the whole machine. 

 

Fig. 1. Design of the analysed quadruped robot  

The gait generation process of the any walking machine is closely related to its 
type. The parameters that allow its appropriate movement are selected depending 
on the number of limbs and the type of gait. In the case of simple walking 
constructions, the basic gait type is creep, also referred to as mechatronic walking. 
In general, these names refer to the gait of each device, whose construction is 
always supported by min. N-1 limbs during its motion [1]. 

During the integration of software responsible for gait generation process with 
the real model of robot often discloses the influences other factors such as 
uncertainty in robot construction or the complicated geometry of the limbs [2]. One 
of the key factors that can interfere with the robot gait generation process is for 
example, type of connection of the control motors with degrees of freedom [1]. 
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The methods and algorithms provided by the OpenCV video library were used 
to identify the motion parameters and the irregularities that occurred during it. 
Software module that was implemented allows cooperation with both the already 
registered video material and that the intercepted in real-time. Its basic 
functionality is primarily associated to finding the current position of the specific 
points of the construction. The additional elements are responsible for the 
transmission of data information and the factors calculated on the basis of their 
value to control system of machine. The schematic representation of this process is 
illustrated in fig. 2. 

Fig.2 The schematic representation of additional software 

In order to simplify the process of identifying the selected points, each of them 
was accompanied by additional marker with a unique color. During the work on the 
implementation of software it was decided to use the CAMShift (Continuously 
Adaptive Meanshift ) algorithm as a method that is responsible for tracking the 
displacement of the key elements. Due to the fact that the CAMShift algorithm is 
based on the definition on finding of local extreme in the density distribution of the 
data set, the basis for object detection is its color, and more specifically, the 
histogram that was built for its color space [3, 4]. An accurate theoretical 
description of the algorithm, its mathematical dependencies, and assumptions about 
the use of the histogram as one of the simplest density estimators  have been fully 
explained in many publications, see [3, 4, 5, 6]. 

In the first phase of the tests the correctness of the angles obtained by the joints 
of the robot was verified. At this step, the values of the angles given by the 
software which was controlled the movement of the limb were compared to the 
values obtained by the joints in fact. The results of the tests are shown in Fig. 3a. In 
order to eliminate any discrepancies, the software that was used has been extended 
to communicate with the control system of walking machine. Its functionality was 
based on the feedback loop mechanism,  which allowed a significant correction of 
the results, as shown in Fig. 3b. 
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Fig. 3. The relationship between the pre-set and read value for joint variable θ2 (knee 
joint of the structure), a) before correction, b) after correction 

Further analyzes was related to  video feedback used to correct movement of the 
whole structure. The research was based on the use of appropriate correction 
factors to ensure the maintenance of the specified motion by the quadruped robot. 
In this case, the specific points  which were tracking were located on the back of 
the construction. 

Keywords: image processing, CAMShift, quadruped robot 
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Parsing expression grammars (pegs) is an alternative notation to BNF [1]. The 
basic difference between these notations results from the way, in which the 
alternative is implemented. In the case of the parsing expression grammar 
alternatives are ordered. Prior alternatives have a higher priority in choosing from 
later ones. In this way, the description of language using pegs is always 
unambiguous. By using pegs it is possible describing all the context-free languages 
and even some context-sensitive languages. 

The parsing expression grammar can easily be translated into a parser by using 
the recursive descent method. However, there is a problem with backtracking. 
When one of the alternatives fails, it is necessary to consider the next one, which 
may require a recalculation. It is possible to apply memoization of previous 
calculations, thus reducing the computational complexity to linear [2]. It is also 
possible to make pegs using a parser machine [3]. 

Translators using parsing expressions have been implemented in many 
programming languages, including C++ [4,5,6]. C++ implementations use 
templates and overloading operators. In this way, the description of the language 
are implemented directly in the code of the translator program. However, there is  
a problem with the understanding of the description, since it needs an adaptation 
the notation of parsing expressions to C++ syntax. In addition, the compiler 
messages associated with advanced metaprogramming can be obscure. 

The implementation described in this article is based on converting the 
specification language script to the C ++ source code. This way, the language 
description is clear and can be build high performance parser. By separating the 
description of the parser from its executable form is possible to support the 
language designer with the tools built into the specification language translator. 
The generated parser code is syntactically correct, so the language designer does 
not need to look C++ compiler error messages. The generated code can include 
optimizations related to the advanced capabilities of C++. 

Keywords: parser generator,  parsing expression grammar, high performance, C++ 
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In this talk we present some results from representation theory of right 
hereditary tensor algebras of bimodules. The methods of representation theory of 
such algebras allows to classify right hereditary semiperfect semidistributive 
(SPSD) rings of bounded representation type. 

We consider O-species that are a special case of species as was introduced by 
Yu.A. Drozd [3]. Let {Oi}  be a family of discrete valuation rings (not necessarily 
commutative) with Jacobson radical Ri and skew fields of fractions Di for i = 
1,2,...,k oraz {Dj} a family of skew fields  for j = k+1, ...,n. Then we can form an O-
species Ω = (Ai, iMj), where all Ai = )( in OH

i
are prime hereditary Noetherian 

semiperfect rings or  Ai, and all iMj  are )
~~

( ji AA −  -bimodules,   as shown in [4]. If 

all skew fields Di (for i =1,2,...,n) are the same skew field D an O-species is said to 
be (D,O)-species.    

With an O-species Ω we can associate the quiver Γ(Ω) as the directed graph  
whose vertices are indexed by the numbers i = 1, 2,..., n and there is an arrow from 
the vertex i to the vertex j if and only if  iMj ≠ 0.  We also  associate a tensor 

algebra Τ(Ω) to an O-species Ω = (Ai, iMj) in the following way. Let ∏
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where T0 = B, and Ti+1 = Ti ⊗B M  ( i > 0) with component-wise addition and the 
multiplication induced by taking tensor products, is called the tensor algebra of the 
species  Ω.  We  study the connections between the representations of O-species 
and modules over the corresponding tensor algebra. We give the conditions on    
(D, O)-species and right hereditary tensor algebra Τ(Ω)  to be of bounded 
representation type in the sense of R.B. Warfield Jr. [6] and V. Dlab,  C.M. Ringel 
[1], [2]. We give the description of such (D,O)-species in terms of Dynkin 
diagrams and diagram with weights similar to [4]. We also study the connections of 
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such (D,O)-species and tensor algebras with right hereditary SPSD-rings and give 
the description of these rings of bounded representation type.  

In this talk we discuss the solving matrix problems over discrete valuation rings 
and skew fields, which are a generalization of matrix problems considered in [7]. 
These matrix problems, i.e. the problems of reducing a family of matrices by some 
family of admissible transformations,  arise in the natural way as in linear algebra  
in studying the representations of (D,O)-species and modules over tensor algebras. 
The solving such matrix problems considered in [5]  is  the main method  to obtain 
the results of our talk.   

Keywords: representation theory, tensor algebra of bimodule, species, hereditary 
rings, mixed matrix problems, discrete valuation rings, rings of bounded 
representation type 
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This study discusses the geometrical model of a coronary stent with known 
design and strength analysis using the finite element method. The coronary stent 
model was made of platinum and chromium alloy. Static analysis based on 
compression of the coronary stent was also performed. The aim of the analysis was 
to examine strength of the stent structure. The study analyzed stresses, 
displacements and plastic strains after applying a constant load to the stent walls. 
The mechanical phenomena such as percentage degree of shortening 
(foreshortening), relative narrowing and area of stent covering were also 
determined. 

One of the biggest successes in the field of invasive cardiology was to use 
endovascular implants termed stents. These implants are designed as small metal 
wirings with cylindrical design. They are implanted in the location of the narrowed 
coronary artery in order to expand it and support the arterial walls [1]. 

Compared to stainless steel (surgical steel 316L), platinum-chromium alloy 
used in this study allows for a reduction in bending resistance and has better fit. 
The PtCr alloy is characterized by greater density compared to surgical steel 316L. 
Therefore, it is more visible in X-ray images despite smaller components in the 
stent. Studies have also shown that stents made of platinum-chromium alloys are 
faster covered by the neointima. Its flexibility allows for easier movement through 
the arteries without causing damages.  

Conditions that characterize endovascular implants are: 
- longitudinal shortening after expansion of the stent is presented as a percentage 

degree of shortening. The dimensions of the stents can be modified (shortened) 
during stent implantation, which has an effect on the final stent length. 
Knowledge of the shortening parameters is useful in choosing the adequate stent 
length and using it in the right position in human body [2].  

 89:;<ℎ9:7;>?>5 = @%@ABCD
@ ∙ 100%  (1) 

where: L – initial stent length, �IJ�K – stent length at the highest loaded. 
- relative narrowing (normal strain) - narrowing of the stent diameter caused by 

compression related to its initial diameter. It is defined as: 



Mathematical Modelling in Physics and Engineering 
 

72 
 

 /;L�7?M; >�::9N?>5 = OP%O
OP   (2) 

where: 
� – initial stent diameter before compression, D - the smallest stent 
diameter after compression. 

The geometrical model of the stent was developed using the SolidWorks 2014 
software. With regard to its shape, the stent is numbered among net stents. A solid 
grid composed of 91052 nodes and 35711 elements was created for the stent 
model. The coronary stent model was made of platinum and chromium alloy. In 
order to perform numerical analysis, apart from the adopted material properties, it 
is also important to define boundary conditions. For this purposes, the stent model 
was fixed at its two ends. It is necessary to reduce the initial diameter of the 
implant in order to ensure proper implantation of the stent in the position of the 
artery narrowing. Furthermore, an insignificant diameter reduction protects from 
the possibility of removing from the catheter surface. The aim of the study is to 
evaluate the stent compression strength. It was adopted that the surgeon acts with  
a specific force on the external stent surface. Therefore, the stent model was loaded 
on both ends with the force of 10 N on four external walls. Stent model with 
applied forces and fixation is presented in Fig. 1. 

 
Fig. 1. Stent model with applied forces and fixation  

The statistical analysis performed using the finite element method allowed for 
evaluation of stent strength. The stent structures which are the most exposed to risk 
of damage during model compression were demonstrated. The study showed that 
an important aspect of stent design is adequate choice of material and model 
geometry.  

Keywords: computational mechanics, FEM, mathematics, PtCr stent, SolidWorks  
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Presented paper includes a theoretical considerations and a results of  
a numerical simulations concerning the issue of stability of slender geometrically 
nonlinear column with an element of variable cross-section subjected to the 
follower force directed towards the positive pole. The study focused on the 
influence of rod of variable cross-section on the value of bifurcation load 
corresponding to the loss of rectilinear form of static equilibrium of the considered 
system. Within the framework of the numerical simulations a phenomenon of local 
loss of rectilinear form of static equilibrium was analysed. 

Geometrically nonlinear column is built of three prismatic rods [1] connected 
by an element ensuring an equality of deflections and angles of deflection at the 
free end of the system. Giving the assumption of known and constant total flexural 
stiffness of the column, a distribution of flexural stiffness is described by the 
coefficient of asymmetry of the flexural stiffness µ defined as follow:  

 
( )

( )∑
=

= III

Ik
k

II

EJ

EJµ  (1) 

In a target system of the geometrically nonlinear column with the nonprismatic 
element analysed in this paper, the rod of lower flexural stiffness was replaced by 
the rod of variable cross-section and the same total volume resulting from the value 
of coefficient of asymmetry of the flexural stiffness µ. The variable cross-section 
was modelled by division of the rod into n prismatic segments of identical length 
and variable width, whereas an approximation of the shape by means the of linear 
function and a polynomial of degree 2 is considered. The columns were subjected 
to the follower force directed towards the positive pole which is one of the cases of 
specific load defined by L. Tomski [2]. 

O the basis of a such defined physical model of the geometrically nonlinear 
system with the element of variable cross-section, a total potential energy was 
determined. Taking into account known a priori the geometrical boundary 
conditions and the geometrical continuity conditions, a differential equations of 
displacement were determined as well as missing natural boundary conditions and 
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continuity conditions. Due to the existing in the system geometrical nonlinearity, 
the boundary problem was solved using the small parameter method [3]. Taking 
into consideration the determined equations describing the analysed system,  
a numerical programmes enabling the analysis of the stability of the column were 
developed.  

 

Fig. 1. The physical model of the system under the follower force directed towards the 
positive pole a) the geometrically nonlinear column, b) the geometrically nonlinear 

column with the element of variable cross-section c) the model of the nonprismatic rod 

Within the numerical calculations, an influence of rod of variable cross-section 
as a component of the geometrically nonlinear column with the nonprismatic 
element on the value of the bifurcation load corresponding to the loss of rectilinear 
form of static equilibrium. The phenomenon of an ‘exit’ from the region of the 
local loss of rectilinear form of static equilibrium was also analysed.  

Keywords: slender system, specific load, nonprismatic, stability 
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We consider the problem of construction of Feller semigroup associated with 
one-dimensional inhomogeneous diffusion process with membrane placed at the 
point, which location on real line is determined by the given function that depends 
on time variable. It is assumed that at the interior points of half-lines separated by 
membrane the desired process coincides with the ordinary diffusion processes 
given there and its behavior at the common boundary of these domains is described 
by the nonlocal Feller-Wentzell conjugation condition of non-transversal type  
[1-3]. This problem is often called the problem of pasting together two diffusion 
processes on a line [4, 5]. 

The study of the problem is performed by analytical methods. Such an approach 
allows to determine the desired semigroup by means of the solution of the 
corresponding problem of conjugation for a linear parabolic equation of the second 
order (backward Kolmogorov equation) with discontinuous coefficients [4-6].  
A classical solvability of this problem is established under the assumption that the 
equation coefficients satisfy the Holder condition with nonzero exponent, the initial 
function is bounded and continuous on the whole real line and the parameter which 
characterize Feller-Wentzell conjugation condition and curve which determines the 
common boundary of domains where the equation is given satisfy Holder condition 
with exponent bigger than ½. In the course of investigation of the problem we use 
the fundamental solutions of parabolic equations and heat potentials associated 
with them [4-9]. As a result of their application the problem formulated above is 
being reduced to the system of two integral singular equations of Volterra of the 
second kind which solution is obtained by the method of successive 
approximations.   

 Note that the similar problem was considered earlier in work [6] in case the 
membrane was placed at a fixed point of the real line. We also mention works  
[10, 11] where the results concerning the problem of construction of diffusion 
processes with jumps at points of the boundary of the domain were obtained by the 
methods of functional [10] and stochastic [11] analysis. 
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The subject of this consideration is an analysis of the effect of fractional order 
of time-derivatives occurring in fractional heat conduction models on the 
temperature distribution in a composite consisting of inner solid sphere and  
a spherical layer (Fig. 1) [1]. The time-fractional heat conduction is governed by 
the following differential equation  

 2
2

1 1
, 1,2

i

i

i i

i

T T
r i

r r r a t

α

α
∂ ∂∂   = = ∂ ∂ ∂ 

  (1) 

where iλ  is thermal conductivity, ia  is thermal diffusivity and iα  denotes the 
fractional order of the left-sided Caputo derivative with respect to time t . 
 

 

 

 

 

 

Fig. 1. A cross-section of the sphere under consideration 

We assume the condition at the centre of the solid sphere, the continuity 
conditions at the interface, the Robin boundary condition on the outer surface and 
the initial condition in the following form 
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 ( ) ( ),0 iT r F r=   (6) 

where T∞  is the ambient temperature, a∞  is the outer heat transfer coefficient and 

iβ  denotes the fractional order of the left-sided Riemann-Liouville derivative. 
To obtain the fractional equation with a constant coefficient, we introduce new 

functions ( ),iU r t  given by the formula 

 ( ) ( ) ( )( ), , , 1,2i iU r t r T r t T t i∞= − =   (7) 

The boundary-initial problem (1-6) for functions ( ),iU r t  was solved under so 

called mathematical formulation - 1 2 1β β= =  and physical formulation - 1 1β α= , 

2 2β α=  [2]. 
An analytical solution of the time-fractional heat conduction problem under 

mathematical conditions for 1 2α α α= =  was determined by using the method of 
variables separation, in the form of appropriate eigenfuction series. 

A solution of the considered problem under physical boundary and continuity 
conditions was determined by using the Laplace transform method, using of the 
Gaver algorithm to numerical inversion of the Laplace transform. 
 The effect of the order of the fractional derivative on the temperature 
distribution in the sphere has been determined numerically. 
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Object recognition in time-varying images is now a rapidly evolving field of 
image processing. Detection of reference objects in a complex image is thought to 
be the basis of modern autonomous systems, especially in the automotive and 
military industries. Such a operations are complex and difficult to perform, and at 
the same time they require a high degree of reliability, which is often associated 
with the life and health of the person. Unfortunately, quality of the examined 
images are have high impact on detection efficiency [1, 2]. The conditions under 
which the pictures were taken are very significant [3]. Particularly important 
elements are included difficult lighting conditions, changing resolution (image 
accuracy), and image scaling and rotation. These elements are always present in 
time-varying images being analyzed in real time. Therefore, the purpose of the 
work was to investigated how big influence they had the mentioned difficulties on 
detect key elements in subsequent frames of the film are. Because of the need for 
real-time image analysis (e.g., motion detection in a moving mechanical vehicle), 
the complexity of time algorithms is also shown. Due to the large number of 
complicated numerical calculations, it is often a critical element of recognition 
systems. 

In order to carry out the research, a reference image with the object of interest 
and images containing the sought object was prepared. The set of search images 
were consisted: images with photometric deformation - different luminance, 
images of different resolutions, images with geometric deformations - rotation, 
offset and scaling. 

The analysis involves is of algorithms for constructing descriptors used: Fast 
Retina Key point (FREAK) algorithm [4] and SPEEDED-UP ROBUST 
FEATURES (SURF) algorithm [5, 6]. These are fairly new and effective 
algorithms in relation to older solutions such as SIFT [7]. Both methods are 
characteristic descriptors built for key elements. Positions of key points  must be to 
set in advance. That's why, the FREAK algorithm is based on the characteristic 
points defined by the Harris & Stephens method [8], while the SURF algorithm has 
its own method. For both methods the input images were prepared in the same way 
- they were converted into monochrome [9], and next were them normalized to the 
scope 0-255 [9]. 

The last step was to carry out the proper detection based on the obtained 
descriptors in the first method and second method. For a built base was done 
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comparison: detection of points of interest, sensitivity to changes in perspective, 
sensitivity to lighting conditions, influence of background texture and object 
sought on search precision were compared. For the analyzed cases, graphs of the 
dependence of the search efficiency on the scale change, and extraction time on the 
number of characteristic points were also determined. 

Keywords: corner detection, object detection, feature detection, descriptors  
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Boolean, propositional satisfiability is one of most important NP-complete 
problems [2]. It is well known that there is no algorithm that efficiently can solve 
all formula valuations instances. Generally it is believed that there is no such 
algorithm at all. However a lot of rather big propositional formula can be solved 
surprisingly efficiently. This is because a number of specially designed algorithms-
programs in this area have been proposed and developed. These algorithms are 
called SAT-solvers. Most of them are some versions of the DPLL algorithm [4].  

In this paper we investigate an approach to SAT-based cryptanalysis for some, 
distinguished symmetric cryptographic algorithms. The main idea of this approach 
is translating the whole given cipher directly into a boolean formula. Some, 
distinguished propositional variables in this formula represent a plaintext,  
a cryptographic key and the corresponding ciphertext, respectively. We can take  
a randomly chosen plaintext and a key, and using SAT-solver compute the 
corresponding them ciphertext. Now, if we have a plaintext and its ciphertext, we 
can use a SAT-solver to search for the valuation of variables that represents a secret 
key. This method can be optimized and computations can be parallelized [1]. In this 
work we show what three well known symmetric-key block ciphers: the Feistel 
Network, the DES algorithm and the Blowfish can be encoded and investigated.  

The simplest example of used ciphers is a Feistel Network. It is a symmetric-
key block algorithm widely used as a design principle of many symmetric ciphers, 
including the famous DES. Its algorithm has the advantage that its encryption and 
decryption procedures are very similar, requiring only a reversal of the key 
schedule. FN is an iterated algorithm which is executed many times on the same 
input.  

A given ciphertext (Rn+1,Ln+1) is decrypted by the following computations  
Ln+1 = Rn ,  Rn+1 = Ln ⊕ Rn ⊕ Kn ,where ⊕ denote a well known XOR operation.  
It is easy to observe that the following equations shows that Feistel cipher can be 
easily decrypted: Rn  = Ln+1 , Ln = Rn+1 ⊕ Ln+1 ⊕ Kn . 

The second equation can be proved from the following properties: 

Rn+1 ⊕ Ln+1 ⊕ Kn = Ln ⊕ Rn ⊕ Kn ⊕ Ln+1 ⊕ Kn = Ln ⊕ Rn ⊕ Kn ⊕ Rn ⊕ Kn = 
=  Ln ⊕ [(Rn ⊕ Kn) ⊕ (Rn ⊕ Kn)] = Ln ⊕ Θ = Ln , 

where Θ denote a string consisting only 0 bit. 
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In the following example we show how we can encode t rounds of Feistel 

Cipher into a propositional boolean formula. We consider the Feistel Network with 
a 64-bit block of a plaintext and a 32-bit key. Let p1, ..., p64, k1, ..., k32 and c1, ..., c64 
are the propositional variables representing a plaintext, a key, and the ciphertext, 
respectively. We have the following formula: 
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Having these we can encode any given number of rounds of mentioned before 
ciphers. 

The cryptanalysis procedure we propose is the following [1]: 

1. encode a single round of the cipher considered as a Boolean propositional 
formula; 

2. automatic generation of the formula encoding a desired number of iteration 
rounds (or the whole cipher); 

3. convert the formula obtained into its CNF; 
4. (randomly) choose a plaintext and the key vector as a $0, 1$-valuation of the 

variables representing them in the formula; 
5. insert the chosen valuation into the formula; 
6. calculate the corresponding ciphertext using an appropriate key and insert it 

into the formula; 
7. run your favourite SAT-solver with the plaintext and its ciphertext bits inserted, 

to find a satisfying valuation of the key variables. 
 
This procedure can compute secret key for some, interested parameters of cipher.   
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References 

[1] Dudek P., Kurkowski M., Srebrny M., Towards Parallel Direct SAT-based Cryptanalysis, in 
PPAM'11 Proc., vol. 7203, pp. 266-275, LNCS, Springer Verlag, 2012. 

[2] Biere A., Heule M., van Maaren H., Walsh T., editors. Handbook of Satisfiability, vol. 185 of 
Frontiers in Artificial Intelligence and Applications. IOS Press, February 2009. 

[3] Menezes, P. van Oorschot C., Vanstone S. A.. Handbook of Applied Cryptography. CRC Press, 
1996. 

[4] Davis M., Logemann G., D. W. Loveland. A machine program for theoremproving. Commun. 
ACM, 5(7):394-397, 1962. 

  



Mathematical Modelling in Physics and Engineering 
 

83 
 

ALGEBRAIC DEPENDENCE OF POLYNOMIAL MAPPINGS 
HAVING TWO ZEROS AT INFINITY 

Sylwia Lara-Dziembek 

Institute of Mathematics, Czestochowa University of Technology,  
 Czestochowa, Poland 
sylwia.lara@im.pcz.pl 

We present explicit formulas that give the algebraic dependence of coordinates 
of polynomial mapping with the constant Jacobian. Depending on the form of the 
leading forms of these mappings, we consider two groups of them. Therefore, the 
formulas indicate, that there are no polynomial which have two zeros at infinity. 

Let  fi, hj  be the complex forms of variables X, Y of degrees i, j respectively and 
, 1i j ≥ .  

Remark 1. Let  

 ( )
2 1 2 2 2 3 1...

p p p

p
f XY f f f f

− − −
= + + + + +  (1) 

 ( )
2 1 2 2 2 3 1...

q q q
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− − −
= + + + + +  (2) 
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 (4) 

for some constants 1 1 1 1,..., , ,...,p qA A B B− − . The form 2 11qh −  is defined by the 

formula 
2 1

1 1
2 11q

k k
qh X Y h

−

− −
−= .   

Remark 2. Let  

 ( ) ( ) ( ) ( )( ) 11 2 1 1... ...
pk l

k l p k l p k l pf X Y f f f f+ − + − + − += + + + + + +  (5) 

 ( ) ( ) ( ) ( )( ) 11 2 1 1... ...
qk l

k l q k l q k l qh X Y h h h h+ − + − + − += + + + + + +  (6) 
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where k l>   (k and l are relativity prim) and 1p q≥ ≥ .  

If ( ) ( )1 1Jac , Jac ,f h const f h= =  then ( ) ( )
1
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for some constants 1 1 1 1,..., , ,...,p qA A B B− −  . The form ( ) 1 1k l q k l
h + − + −  of degree 

1k l+ −   is defined by the formula ( ) ( ) ( )
1

1 1 1

qk l
k l q k l q k l

h X Y h
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Corollary . In all of these possible cases the polynomials f, h are algebraically 
dependent and so ( )Jac , 0f h = . 
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There has been considerable progress in large-scale first-principle calculations 
of nano-material in last decade. For some relatively simple structures, such as the 
carbon nano-tubes and the graphene, first-principle calculations can provide 
reliable quantitative results. We will review our large scale first-principle 
calculations for the edge electronic structures of carbon nano-tube and graphene. 
However up to date, only few, if any, results of first-principle calculation for 
nanostructures could be compared with experiments directly. We will address  
a number of difficulties and introduce a multi-scale algorithm that enable us to 
overcome the specific difficulty induced by a large number of degrees of freedom. 
On the other hand, computational modeling assisted with first-principle calculation 
is important. Model for graphene edge energy potential based on the first principle 
calculation will be given as example. 
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Consider non-linear functional equation  

 ( ) ( )[ ]( ) ( )xgxfhx += ϕϕ   (1) 

where hgf ,,  are given and ϕ  is a unknown function. 

We accept the following notation: [ ]baI ,= , Rba ∈, , ,: abd −= ( )IWγ  - is the 

Banach space of the r -time differentiable functions defined on the interval I  with 
values in R , such that, for some 0≥M ; its r -th derivative satisfies the following 
γ -Hölder condition  

( )( ) ( )( ) ( )xxMxx rr −≤− γϕϕ ,   Ixx ∈,  

where a fixed function γ  satisfies the following condition: 

(Γ) [ ] [ )∞→ ,0,0: dγ  is increasing and concave, ( ) 00 =γ , ( ) ( )0lim
0

γγ =
+→

t
t

, 

( ) ( )dt
dt

γγ =
−→

lim , ( ) +∞=′+ 0γ   

We assume that  

(i) IIf →: , ( )IWf γ∈ , 1sup ≤′f  

(ii)  RIg →: , ( )IWg γ∈  

(iii)  RRh →: , rCh∈ , ( )rh  fulfils the Lipschitz condition in R . 
(iv) there exists I∈ξ , such that ( ) ξ=

∞→
xf n

n
lim , Ix∈ , where nf  is the n-

th iteration function 
 

(v) h is analityc function at 0η , where 0η  is the solution of equation 

( ) ( )ξηη gh += 00   
 

We define functions RRIh k
k →× +1: , 1,...,1,0 −= rk  by the formula 



Mathematical Modelling in Physics and Engineering 
 

88 
 

( ) ( ) ( )

( ) ( )
















∂
∂++

∂
∂′+

∂
∂=

+=

+++ 11
0

101

000

...:,...,,

:,

k
k

kkk
kk y

y

h
y

y

h
xf

x

h
yyxh

xgyhyxh

 

Theorem 1. 

If assumptions (i)-(iii) are fulfilled, f  is a monotone function in the interval I , the 

conditions (iv) and (v) are fulfilled for 0=ξ , 00 =η  and  

( ) 00,...,0 =kh , rk ,...,1= ;  

( ) ( )( ) 100 <′′ rfh  

then equation (1) has exactly one solution ( )IWγϕ ∈  satisfying the condition  

 ( )( ) 00 =kϕ , rk ,...,0= .  (2) 

Moreover, there exists a neighbourhood U  of the point 0=ξ  and the number 0r  

such that for a function ( )UWγϕ ∈0 , satisfying the condition (2) and the inequality 

00 r≤ϕ , a sequence of functions  

( ) ( )[ ]( ) ( )xgxfhx nn += −1ϕϕ ,  Ux∈ , 

converges to a solution of (1) according to the norm in the space ( )UWγ . 
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In this paper we consider tridiagonal linear systems of algebraic equations. 
We are to use Maple system to implement an algorithm which is based on results 
presented in [1]. 
A linear algebraic tridiagonal system for n unknowns can be represented by 
a matrix equation of the form 

 dxA =⋅n  (1) 

where 
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We assume that the matrix nA  is not singular, it means that equation (1) has the 
unique solution. 
Bearing in mind the considerations presented in [1] we conclude that solution to (1) 
can be obtained in 3 steps. 

Step 1. Calculation of the determinant nW  of the matrix nA . 
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 (3) 

Step 2. Calculation of 1x
nW  which is the determinant of the matrix obtained from 

matrix nA  by replacing its first column by the vector d . In order to obtain 

determinant 1x
nW  we must take into account the second order nonhomogeneous 

linear recurrence equation 
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together with initial conditions 

 11
1 dW x = , 12212

1 cdadW x −=  (5) 

Step 3. Solution to the linear algebraic tridiagonal system (1). Bearing in mind [1] 
we conclude that this problem comes down to resolving the linear recurrence 
equation  
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with initial conditions 
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Now, we are to implement these three steps into Maple system, [2]. To this end 
let us consider the tridiagonal linear system of algebraic equations which has 
2-Toeplitz structure and consists of 100 unknowns with main matrix of the form 
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and the vector of right-hand-sides of the equations has the form [ ] 1001×= idd , 

1+= idi , 100,..,2,1=i . 
In order to solve this system of equations using the above presented recurrence 

method we implement the proper syntax to Maple. 
We start with declaration of all data 
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Subsequently we implement steps 1-3. 
Step 1. 
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Step 2. 
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print )(x  

It has to be emphasized that the presented algorithm can be used without necessity 
to impose any conditions on elements of main matrix of the analyzed linear system 
of equations. 

Keywords: tridiagonal 2-Toeplitz matrix, linear system of algebraic equations 
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In every society there are producers who must produce in order to obtain 
profits, and consumers who must buy in order to satisfy their needs. Due to the fact 
that the production in Polish economy is limited by resources, one may often 
observe conflicting situations that occur between producers and consumers. The 
problem of conflicting aims between producers and consumers is discussed in the 
model [1]. The expert method of balancing the unsustainable production and 
consumption model is presented in the work [2]. This method pertains to: 

a) the establishment of criteria and importance thereof on the basis of which 
compromise will be achieved, 

b) the establishment of a mutual link between particular contractors and 
criteria, 

c) the calculation of the scope of the concession of each contractor carried out 
on the basis of the aforesaid data. 

The work [3] discusses the method of balancing the model in the case of 
indivisible goods, where the entire burden of model balancing is borne only by 
consumers. 

The work [4] presents the method of balancing the model in the case of 
indivisible goods, where the entire burden of model balancing is borne only by 
producers. 
In my paper, I will present the generalization of the methods discussed in [3] and 
[4]. 
The results of the work allow us to formulate the following conclusions: 

a) it is possible to present the problem of conflicting aims between producers 
and consumers in an economic-mathematical model, 

b) the task of balancing the model is undertaken by all contractors, 
c) the compromise achieved is clearly determined with accuracy to the 

requirements of the policymaker. 

Keywords: iteration process, production and consumption model 
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The anaerobic biological stabilization is currently the most common process of 
neutralizing sewage sludge in large wastewater treatment plants. Mineralization of 
biodegradable organic substrates is followed by an improvement of the drainage 
efficiency and a decrease of pathogenic organisms. The composition of fermented 
substrate depends on the quantity of the produced biogas and its composition. The 
content of methane in biogas varies from 50 up to 80% and depends on the content 
of proteins, carbohydrates and fats in sewage sludge subjected to the fermentation. 
In addition to the type of substrate, the fermentation process also depends on 
temperature, pH, process duration, presence of toxic substances, substratum load 
chambers, concentration of easily digestible components for micro-organisms and 
appropriate conditions of their development [1, 2]. Combustion of biogas allows 
for energy recovery. Therefore, produced biogas is used above all for the needs of 
covering demand for thermal energy and electricity. It is used for the needs of 
sewage treatment plants, such as heating digesters or powering devices for mixing 
and aerating [3, 4]. Taking into account the need to develop effective treatment 
methods of excess sewage sludge from treated coking wastewater, studies on the 
co-fermentation of this sewage sludge with municipal sewage sludge were 
conducted. An aim of these studies was to assess the effect of excess sewage 
sludge from treated coking wastewater on the technological parameters of 
fermentation, mineralization degree of organic compounds and biogas production. 

Sewage sludge coming from municipal sewage treatment plant and sewage 
sludge from coking sewer plant were used in the study. The anaerobic digestion 
(fermentation) tests were conducted in bioreactors fitted with nozzles intended for 
measuring biogas pressure. The following mixtures were prepared for the 
fermentation studies: 

• municipal sewage sludge — control sample (K); 
• municipal sewage sludge amended with excess sewage sludge from treated 

coking wastewater — sample (B). 
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The sewage sludge mixtures were incubated for 16 days with no access to light. 
After 4, 8, 12 and 16 days, one reactor was eliminated and a necessary analysis was 
conducted. 

In order to determine the follow of the digestion process, the selected physical-
chemical properties of the sewage sludge were determined. The determinations 
were made in accordance with the methodology specified by Hermanowicz [5]. 

The results of the physical-chemical analysis of sewage sludge during 16 days 
of stabilization are shown in Table 1. 

Table 1. Changes in the physico-chemical properties of sewage sludge  
during the fermentation process – control sample 

Ratio Unit 
Process time, day 

0 4 8 12 16 
pH — 7,0 7,6 7,6 7,7 7,8 

DCOD mg O2/L 970 660 320 241 110 
Total suspended solids 

(TSS) 
g/L 18,9 17,6 16,9 16,2 15,0 

Fixed suspended solids 
(FSS) 

g/L 7,5 7,2 7,1 7,1 6,9 
% 40 41 42 44 46 

Volatile suspended solids 
(VSS) 

g/L 11,4 10,4 9,7 9,1 8,1 
% 60 59 58 56 54 

 
In a mixture of municipal sewage sludge with industrial, the contents of dry 

matter before co-digestion process was 18.4 g/L. After the co-digestion process, 
there was a decrease in dry matter content by 18% (Table 2). 

Table 2. Changes in the physico-chemical properties of sewage sludge  
during the co-fermentation process 

Ratio Unit 
Process time, day 

0 4 8 12 16 
pH — 7,3 7,6 7,7 7,8 7,6 

DCOD mg O2/L 1300 940 400 390 240 
Total suspended solids 

(TSS) 
g/L 18,4 16,4 16,2 16,0 15,1 

Fixed suspended solids 
(FSS) 

g/L 7,9 7,5 7,4 7,2 7,0 
% 43 46 46 45 46 

Volatile suspended solids 
(VSS) 

g/L 10,5 8,9 8,8 8,8 8,1 
% 57 54 54 55 54 

 
The amount of biogas produced during each day of fermentation and basic co-

digestion parameters of municipal sewage sludge with excess sewage sludge from 
treated coking wastewater were determined as well (Table 3). 
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Table 3. Parameters and the energy balance of the co-fermentation process 

Parameters Unit K B 
Load of organic compounds 
in the fermentation chambers 

g VSS/L d 0,55 0,40 

Percentage of the organic substance decomposition % 29 23 

Production of biogas during digestion process 
L 11,7 10,0 

L/g TSS 0,62 0,54 
L/g VSS 1,03 0,94 

Content of methane in biogas on average % 61 63 

Production of methane during digestion process 
L 8,1 5,9 

L/g TSS 0,43 0,39 
L/g VSS 0,71 0,68 

The maximal (theoretical) methane production 
L 9,1 7,4 

L/g TSS 0,48 0,40 
L/g VSS 0,80 0,70 

The potential of methane remaining in sewage sludge % 10 20 
Constant rate of the methane production d-1 0,147 0,111 
Nonlinear estimation error L 0,14 0,16 
Coefficient of determination — 0,995 0,975 

 
In the assumed test conditions of technological parameters of sewage sludge 

fermentation and its mixtures with sewage sludge, cokes did not differ from each 
other by more than 25%. 

Based on the conducted studies, it is possible to present the following 
conclusions: 

1. Co-digestion of sewage sludge with excess sewage sludge from treated 
coking wastewater cannot exceed the mixing ratio of 10:1. While 
maintaining the above proportions, the technological parameters of sewage 
sludge fermentation and its mixtures with sewage sludge coke did not differ 
from each other by more than 25% (total biogas productions, decomposition 
degree of organic matter, changes in the content of organic compounds 
expressed with DCOD, loss of dry matter and methane content in biogas). 

2. Excess sewage sludge from treated coking wastewater can be neutralized in 
the fermentation process along with municipal sewage sludge provided that 
there is a constant quality-quantitative control of the sewage sludge and 
technological parameters. However, in order to confirm the above, it is 
necessary to conduct the study in a flow system. 

Keywords: biogas, co-fermentation, sewage sludge, sewage sludge from treated coking 
wastewater 
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Issues appear before engineers currently, require often perform very complex 
computer simulations on the basis of which can be introduced various kinds of 
changes to the analyzed object (its geometric model). In a significant part of these 
simulations are calculated distributions of various physical quantities such as 
stresses, deformations, displacements and temperature. The computation of such 
distributions for a continuous object in the real space it is only possible in the 
approximate, by using of the numerical model contemplated phenomenon or 
physical processes. The numerical model is obtained by solving partial differential 
equations. These equations make up the mathematical model of the problem being 
studied. Analytical solution of the generated equations for the problems faced 
before the engineers in this time is in practice impossible. This is due to the fact 
that analyzed objects usually have complex shapes and are imposed on them 
complicated boundary conditions. 

The most widely used in engineering simulations is discretization of the 
analyzed area, that is, its division into smaller, geometrically simple areas. 
Discretization of the considered area  is used to transform a mathematical model of 
the issues on its numerical model [1,2]. The final result of this is a system of 
algebraic equations (usually linear) with a finite numbers of unknowns. 

Most frequently for solving of the resulting equations are used modern 
multicore architectures such as a graphics processors. Programming graphics 
devices is not easy and requires from the programmer to additionally knowledge 
about the hardware architecture. An effort associated with the adaptation of the 
algorithm to a multi-core architectures are not always profitable.  

The new standard of the C ++ x11 language is introduced of many facilities 
[3,4]. To the language was introduced build-in threads to perform computations in 
parallel on multiple cores. Furthermore, the r-references and a move semantics 
increased productivity programs. The language has also become easier to learn and 
use. 

They also support the implementation of numerical algorithms for general 
purpose processors while maintaining an expected high performance of the 
computation. 

The authors of the work has focused on the new elements of the C ++ language 
that can be used in the implementation of the computer simulations of the physical 
processes based on PCs. 
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Abstract. In the last decades the categorical structures have become very useful for 
modelling the  program systems. Categories are mathematical structures consisting 
of objects and morphisms between them. They enable to work with more complex 
structures as the sets that are frequently used in computer science. Their another 
advantage is that their properties can be represented also graphically.  

1. Introduction 

In the last decades the categorical structures have become very useful for 
modeling the  program systems. Categories [1] are mathematical structures 
consisting of objects and morphisms between them. They enable to work with 
more complex structures as the sets that are frequently used in computer science. 
Their another advantage is that their properties can be represented also graphically 
[2].  

When we are interested in modelling behaviour of programs and program 
systems, the special categorical structures called coalgebras [3,4] are suitable. 
A coalgebra is constructed over a base category R of states, where the objects 
represent a state space and the morphisms are transition relations, i.e. mappings 
representing destructor operations. States are keep back from an observer.  
A relation which can be observed externally and what is actually inside is the 
foundation of coalgebras. A coalgebra is indicated by a polynomial endofunctor S 
[5] over a given category and therefore a coalgebra is called also S-coalgebra. 
Formally, a coalgebra is a pair �R, T� , where T is a coalgebraic map and it is a tuple 
of destructor operations. A S-coalgebra is often written as 

                                                    T: U → S�U�,                                                             (1) 

where U stands for a state space. The behaviour is then observed as a sequence of 
observable output values during the execution of a system. 

In this paper we sketch how the coalgebras can be used for modelling 
operational semantics of programs written in imperative language. Then we show 
the principles of coalgebraic approach for object oriented programs. Finally, we try 
to design how component based program systems can be modelled coalgebraically. 

2. Coalgebra for Imperative Language 

Firstly, we construct a coalgebra for simple imperative language Jane consisting 
of five traditional Dijkstra’s statements: assignment, empty statement, sequence of 
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statements, conditional statement and while cycle, together with arithmetic and 
Boolean expressions. Constructed coalgebra for this language can be considered as 
its operational semantics.       

Operational semantics expresses execution of a program step by step using 
transition relations. It provides not only a meaning of a program but also its 
observable behaviour. This method requires medial knowledge of mathematics, 
therefore it is understandable and popular also for practical programmers. 
Structural operational semantics was formulated by Gordon Plotkin in [6] and the 
main ideas and motivations are explained in [7].  

We introduce the syntactic domain Statm for statements. The elements S of it 
are the statements constructed in the sense of the following syntax: 

            V ∷= � ≔ ; | <Y?Z | V; V | ?
 � 7ℎ;> V ;L<; V | Nℎ?L; �  \9 V,                   (2) 

where x is a variable, e is an arithmetic expression, b is a Boolean one, and skip is 
the empty statement. To construct a base category R we need to define the semantic 
domain State of states. The elements (states) are the function <: ]^_ → ]^`ab that 
we define as the sequences of the ordered pairs: 

                                                     < = 〈���, M��, … , ���, M��〉,                                       (3) 

where �# are the variables from the countable set Var  and M# are their values from 
the set Value. A state is an abstraction, a snapshot of a computer memory and the 
execution of a statement can modify some values of program variables, i.e. a state 
can be changed. We define two special states: an initial state <� before a programm 
execution and the undefined state for abnormal ending of execution: 

                                                      <f = 〈�⊥, ⊥�〉.                                                          (4) 

Now we construct the category R of states as follows: states < are the category 
objects and morphisms are the state changes that we define as a transition  
a mapping >;�7 

                                     >;�7: hi^ij → �hi^ib → hi^ib�.                                     (5) 

defined below. Before its definition we need to verify that R is a category. 
Transition function is obviously partially defined what is a problem when we use it 
as category morphism. Therefore we introduced the undefined state and extend its 
definition to total function. The undefined state is also the terminal object of R. 
Another problem arises in the case when infinite cycle is executed. Then the 
composition of morphisms is infinite. We solve this situation in such manner that 
any infinite composition of morphisms (category diagram) has to have a colimit 
[8]. That means we state a new request on a category R that it has colimits. It is 
true, because our category of state is a category of sets that has colimits. 
Now we can define polynomial endofunctor  S: R → R  by 

                                            S�<� =  1 + <                                                              (6)  
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where 1 serves for abnormal or infinite execution. It is clear that it is the terminal 
object of R, the undefined state  <f. Then the coalgebra for the language Jane is the 
pair �hi^ib, >;�7�, where >;�7 is defined for a statement V by the following 
definition, where ��9:7�<� =  <f: 

>;�7kVl�<� =                                                                                                                       (7) 

mn
nn
o
nn
np

<q = <[� ⟼ k;l<] if V = � ≔ ;;< if V = skip or V = while � do V and k�l< = y^`zb;>;�7kV�q ; V�l�<′� if V = V�; V� and 〈V�; V�, <〉 ⇒ 〈V�q; V�, <′〉;>;�7kV�l�<′� if V = V�; V� and 〈V�; V�, <〉 ⇒ 〈V�, <′〉;>;�7kV�l�<� if V = if � then V� else V� and k�l< = i_ab;>;�7kV�l�<� if V = if � then V� else V� and k�l< = y^`zb;>;�7kV;while � do Vl�<� if V = while � do V and k�l< = i_ab; ��9:7�<� otherwise.

 

3. Coalgebra for Objects and Classes 

In object oriented paradigm a program consists of a collection of entities called 
objects. These entities are autonomous and each of them serves for a specific task. 
The communication between them is obviously by message sending. Objects can 
be characterized informally as the entities 

• with local state accessible by the object methods 

• combining data structure with behaviour. 

Another concept in object oriented paradigm is a class.  A class consists of two 
parts: class specification and class implementation. Class specification contains 
methods together with the constraints affecting their behaviour. Class 
implementation is not visible for users. The essentials are put in the class 
specification, and the particulars in the class implementation. Only a few formal 
foundations exist for object oriented paradigm and we try to sketch a modelling of  
objects and classes coalgebraically. We follow the approach published in  [9].  

We assume a category R of which objects we call state spaces. The methods of 
a class are of the  form 

                                4#: � × �# → �# +  �#  × �,                                                     (8) 

where X is a local state space, �# are the types of input values and �# , �# are the 
types  of  output values,  for ? = 1, … >. These methods can produce either 
observable elements of a type �# or an observable output of the type �# together 
with a changed, new state �. Some of types can be empty. For instance, if �# is 
empty, such method is called  an attribute, because it does not change the local 
state space. In coalgebraic approach no binary methods of the form � × � → � +
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� × � are allowed, because they lead to the contravariant functors.  Such methods 
also present typing problems in combination with inheritance [10].  

The methods of a class generate a corresponding polynomial endofunctor. We 
use here the following general form constructed using categorical products, 
coproducts and exponentials.  We define a polynomial endofuctor  S: R → R over 
state category by 

                        S��� = ∏ ��# + �# × �� ���#&� ,                                                    (9) 

i.e. as a finite product of polynomials. This functor is constructed according of 
methods 4�, … 4� defined in (8) above that work on local states �.  A S-coalgebra is 
then the pair  ��, 〈 4�, … , 4�〉�,  where 

                             T = 〈4�, … 4�〉: � →  S���.                                                      (10) 

Now we can summarize a formal behavioural model of a class specification. It is 
constructed as a S −coalgebra defined above together with 

• an initial state <� ∈ � that need to satisfy the condition in the creation 
section of the class specification; and 

• assertions, which are optional and they put the constraints affecting 
behaviour. 

An object belonging to the class modelled by this coalgebra  T: � → S��� is simply 
an elements of a state space, i.e. an object in a category 9 ∈ RJ��  of states. When  
a method 4# is sending with an input � ∈ �# to the object 9, we can write 

                             9. 4#��� =  4#�9, ��     ∈     �# +  �# × �.                                  (11) 

To initialize a class, we apply the operation >;N to a class �T: � → S���, <�� and it 
provides an object of the class the initial state <�.  

We may also consider an object 9 together with its class �T: � → S���, <�� as  
a particular kind of automaton, where 9 is its current state and coalgebra is its 
transition function. In object oriented paradigm there is some kind of non 
determinism, because the transition function is a tuple of the methods. An object 
itself does not know which of these ones is selected by a client, and with which 
input value. This situation is solved by using coproducts  in outputs.  

4. Coalgebra for Components   

Programming in present can be characterized as a composition of some 
prepared components. The main difference between component oriented 
programming and object oriented programming is that the first places importance 
on the interfaces and composition, while the latter on classes and objects. 
A component is an independent deployable entity. It interacts with the environment 
by typed ports in interface. They has no externally observable state, its initial state 
is established after its deployment. Typed ports are very important part of any 
interface because cooperation between components can be performed only through 
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ports of corresponding types. Ports serve as end points of interactions, they enable 
transfer of data of some type in required direction.  Components can be generic, i.e. 
substituting parameters (of proper types) by appropriate arguments enable their 
using for different purposes [11]. To formulate coalgebras for components we 
follow the ideas in [12,13].  

We denote by � and � the sets of typed input and output ports, respectively. 
Then we can denote an interface as a pair  ��, �� and a component 49�Z as an 
arrow 

                                           49�Z: � → �.                                                             (12) 

The behaviour of a component is determined by its input and observed by its 
output. In real life, components do not need to have such deterministic behaviour, 
therefore we need to express also non deterministic case.  Another problem is 
request on their genericity. It can be solved by using a strong monad � as  
a behavioural model.  It is identity functor for deterministic case, whereas  
powerset is used for non determinism and coproduct for partiality. A component 49�Z is modelled as a coalgebra 

                                           〈�2J��, T2J��〉 ,                                                         (13)  

                                  T2J��:  �2J�� × � → ���2J�� × ��                                  (14) 

together with an initial state <�. For each state < ∈ �2J�� the behaviour of  
a component at this state is organized as a tree, because it depends on the 
sequences of input values. In tree nodes are from � and edges are labelled with 
values from �.  

Because the components are arrows, we need to construct a base category as  
a category with interfaces as objects and 2-cells (arrows between arrows) as 
morphisms. These morphisms are the corresponding coalgebra morphisms. It can 
be proved that such structure is a category. It means, that this category covers 
components interfaces together with interactions modelled by coalgebraic 
mappings.  

5. Conclusion 

Coalgebras seem to be a very useful formal tool for modelling observable 
behaviour of programs and program systems. In this paper we present only a basic 
principles that can be elaborated in the future research in details. 
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THE JACOBIAN HAVING NON - GENERIC DEGREES 
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We give the decomposition of the leading forms of the polynomial mapping of 
two complex variables when the Jacobian of this mapping doesn't the maximum 
degree. We consider the mapping having two zeroes at infinity. 
Let fm, hn  be the forms of variables X, Y degrees m and n respectively, for 

2m n≥ ≥ . The Jacobian of these forms vanishes and we represent the structure of 
the forms fm, hn. 

Lemma. Let ( )Jac , 0m nf h = . Therefore 

 ( ) ( )1

1 1 ...
k

mp p

m k kf a X Y X Yα β α β = + +  

ɶ

 (1) 

and 

 ( ) ( )1

1 1 ...
k

np p

n k kh b X Y X Yα β α β = + +  

ɶ

 (2) 

where: ( ) ( ), , ,m m m n n n m n= =ɶ ɶ  and ( )1 ... ,kp p m n+ + = , , , ,i ia b Cα β ∈ ,  

det 0i i

j j

α β
α β
 

≠ 
 

 for i j≠ , where ( ),m n  means the greatest common divisor of 

the numbers m and n. 

Remark 1. We can assume that 1 ... kp p≥ ≥ .  

Corollary 1. Let  = ,m nf f f h h h+ = +ɶ ɶ , where det ,detf m h n< <ɶ ɶ .  

If ( )Jac , 0m nf h = , then only zeros at infinity of the mapping (f, h) are the factors of 

the form fm or hn. 
 

Corollary 2. If the numbers m and n are relatively prime and ( )Jac , 0m nf h = , 

then ( ) m

mf a X Yα β= +   and  ( ) n

nh b X Yα β= + .  This means that the mapping 

(f, h) has only one zero at infinity. 
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Corollary 3. Let  = ,m nf f f h h h+ = +ɶ ɶ , where det and detf m h n< <ɶ ɶ . Let 

( )Jac , 0m nf h = . If the mapping (f, h) have two zeros at infinity, then   

 ( ) ( ) =
p qk l k lf X Y f and h X Y h+ = +ɶ ɶ  (3) 

where k l≥ ,  (k >l when k and l are relatively prime) and 1p q> ≥ . 
 

Remark 2. In particular can be 1 1 = k kf X Y f and+ + + ɶ  k kh X Y h= + ɶ  for 

k = l = 1,  p = k +1,  q = k. 

Keywords: Jacobian, zeros at infinity 
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DIFFERANTIAL OPERATORS: THE ELLIPTICITY AND ITS 
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Many important analytic or geometric objects like classes of functions or 
mappings or more generally sections of bundles are defined by the property of 
belonging to the kernel of some differentials operators. For example, holomorphic 
functions constitute the kernel of the Cauchy-Riemann operator, conformal vector 
fields are in the kernel of the Cauchy-Ahlfors or conformal Killing operator [2], 
harmonic functions are the in kernel of the Laplace operator etc. It curious that the 
three mentioned operators are or gradients (the first two) or a composition of 
gradients (the third one).  

Gradients (in the sense of Stein and Weiss [9]) form an important class of linear 
differential operators. They are, by the definition, irreducible summands of the 
covariant derivative (differential). Many natural differential operators in geometry 
are or gradients or their linear combinations or at last their compositions. They 
depend on the geometric structure of the domain (manifold) in which they are 
considered.  But their importance comes also from the fact that they can encode 
(e.g. in their spectra) some geometric data. From this point of view the most 
interesting seems to be the class of elliptic operators.  

We are going to define the ellipticity and give examples of a wide class of 
natural elliptic operators. Some simple rules for constricting such operators will be 
given. The talk will also be a review of the history of the problem of  
a characterization of the ellipticity [3], [4] and [1]. Some important consequences 
of the ellipticity (e.g. the existence of a discrete spectrum) will be given [7]. Some 
applications of these consequences will be reviewed [6],[8], and [5]. The results 
with a contribution of the author and his colleagues will be enlighten primarily. 

Keywords: differential operator, ellipticity, discrete spectrum, complete orthonormal 
system 

References 

[1] Branson T. P., Stein-Weiss operators and ellipticity, J. Funct. Anal.  151 (1997), 334-383. 
[2] Heil K., Moroianu A., Semmelmann U.,  Killing and conformal Killing tensors. J. Geom. Phys. 

106 (2016), 383-400. 
[3] Kalina J., Pierzchalski A., Walczak P., Only one of the generalized gradients can be elliptic, 

Ann. Polon. Math., 1997, 111-120. 



Mathematical Modelling in Physics and Engineering 
 

110 
 

[4] Kalina J., Ørsted B., Pierzchalski A, Walczak P, Zang G., Elliptic gradients and highest 
weights, Bull. Polon. Acad. Sci. Ser. Math., 1996, 511-519. 

[5] Kimaczyńska A., Pierzchalski A., Elliptic operators in the bundle of symmetric tensors, to 
appear in Banach Center Publ. 

[6] Kozłowski W., Pierzchalski A., Natural boundary value problems for weighted form 
Laplacians, Ann. Sc. Norm. Sup. Pisa,  2008, 343-367. 

[7] Ørsted B., Pierzchalski A., The Ahlfors Laplacian on a Riemannian manifold, Constantin 
Caratheodory: An International Tribute, 2, World Scientific, Teaneck, NJ, 1991, 1021-1049. 

[8] Ørsted B., Pierzchalski A., The Ahlfors Laplacian on a Riemannian manifold with boundary , 
Michigan Math. J., 1996, 1, 99-122. 

[9] Stein E., Weiss G., Generalization of the Cauchy-Riemann equations and representations of the 
rotation group, Amer. J. Math. 1968, 163-196. 

  



Mathematical Modelling in Physics and Engineering 
 

111 
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The classical heat conduction is based on the Fourier law, which relates the heat 
flux vector to the temperature gradient. In combination with a law of conservation 
of energy, the Fourier law leads to the parabolic heat conduction equation 

Ta
t

T ∆=
∂
∂

                               (1)  

with a  being the heat diffusivity coefficient. 
In the medium with the volume heat absorption proportional to the temperature 

we have  

,bTTa
t

T −∆=
∂
∂

                           (2) 

where 0>b  and 0<b  correspond to absorption and release of heat, respectively. 
The time-nonlocal dependence between the heat flux and the temperature 

gradient with the “long-tail” power kernel [1-4] can be interpreted in terms of 
fractional integrals and derivatives and results in the time-fractional heat 
conduction equation 

.20, ≤<∆=
∂
∂ αα

α
Ta

t

T
                            (3) 

The time fractional counterpart of equation (2) has the form 

20, ≤<−∆=
∂
∂ αα

α
bTTa

t

T
                               (4) 

with the Caputo fractional derivative [5-7] 

( ) ( ) ( )
,1,

1

0

1 nnd
d

Td
t

ntd

Td
t

n

n
n <<−−

−Γ
= ∫

−− ατ
τ

ττ
α

α
α

α
     (5) 
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where ( )xΓ  is the gamma function. 
In this paper, the  time-fractional heat conduction equation with one spatial 

variable in spherical coordinate system is considered in a medium with spherical 
cavity: 

 
( ) ( ) ( ) ( )trTb

r

trT

rr

trT
a

t

trT
,

,2,,
2

2

−









∂
∂+

∂
∂=

∂
∂

α

α
,  (6) 

where .0,20,0, >≤<∞<<∞<< atrR α  
Equation (6) is supplemented by zero initial conditions and the Dirichlet boundary 
condition 

( ) 20,00, ≤<= αrT ,         (7) 

( )
,21,0

0, ≤<=
∂

∂ α
t

rT
          (8) 

 ( ) ( )tptRT δ0, =  (9) 

with ( )tδ  being the Dirac delta function. 
Introducing the auxiliary variable  

 Rrx −=  (10) 

and the new sought–for function 

Tru = ,               (11) 

the initial-boundary-value problem (6)-(9) is reduced to the following one: 

( ) ( ) ( ) ∞<<−
∂

∂=
∂

∂
xtxub

x

txu
a

t

txu
0,,

,,
2

2

α

α
  (12) 

( ) 20,00, ≤<= αxu ,         (13) 

( )
,21,0

0, ≤<=
∂

∂ α
t

xu
          (14) 

( ) ( )tRptu δ0,0 = .       (15) 

Using the sin-Fourier transform with respect to the spatial coordinate x  and the 
Laplace transform with respect to the time t  gives  
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 ( )
bas

pRa
su

++
=

2

0* ,~
ξ

ξ
ξ α . (16) 

Inversion of the integral transforms results in the solution 

 ( ) ( )[ ] ( ) ξξξξ
π

α
αα

α dsin
2

,
0

2
,

10 xtbaEt
Rpa

txu ∫
∞

− +−= , (17) 

where ( )zE βα ,  is the Mittag – Leffler function in two parameters βα ,  [5-7] 

( ) ( ) Cz
n

z
zE

n

n

∈>>
+Γ

=∑
∞

=
,0,0,

0
, βα

βαβα .              (18) 

Returning to the quantity ( )trT ,  according to (9), we get 

 ( ) ( )[ ] ( )[ ] ξξξξ
π

α
αα

α dsin
2

,
0

2
,

10 RrtbaEt
r

Rpa
trT −+−= ∫

∞
− . (19) 

The results of numerical calculations are shown in Figs. 1-2. In calculations we 
have used  the nondimensional quantities  

T
p

t
Tbtb

R

ta
R

R

r
r

0

2/

,,,, ===== α
α

κξξ .          (20) 

When 0=b , the solution (19) coincides with the corresponding solution to the 
time-fractional diffusion-wave equation [4, 8]. 
 

 
Fig. 1. The fundamental solution to the Dirichlet problem for 0,5, 0,25α κ= = . 
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Fig. 2. The fundamental solution to the Dirichlet problem for 0 1,5α≤ ≤  ( 0,5, 0,25b κ= = ). 

Keywords: heat conduction equation, Caputo fractional derivative, Laplace integral 
transform, sin-Fourier transform, Mittag – Leffler function 
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The problem of torsion of sandwich panels with a shear deformable core is 
known in the literature. We can distinguish at least 3 theoretical approaches to this 
issue [1, 2, 3]. It is also worth noting that, in the analysis of torsion, it is important 
to distinguish the St. Venant torsion and the warping torsion. The problem of 
torsion was also analyzed experimentally and numerically, even in the papers  
[4, 5, 6]. 

In most typical cases, which concern the sandwich panels and take place in civil 
engineering, the effect of torsion is rightly ignored. Even if there are some load 
eccentricities, the torsion and the induced forces are very small (in practice 
negligible. For some time, with the tendency to enlarge the thickness of the core, 
this situation is changing. Even more drastic example, in which torsion is 
important, is the installation of an additional façade layer to the existing walls 
made of sandwich panels. The heavier and more distant the additional layer, the 
larger the torsion of the sandwich panel to which it is mounted.  

In this paper, the influence of load and support boundary conditions on the 
internal forces and stresses in the sandwich structure subjected to torsion is mainly 
analyzed. The analyzes started with the schemes most close to the theoretically 
ideal conditions. Subsequently, the conditions to reflect the actual conditions were 
gradually sought. Although apparently the load and support boundary conditions of 
the wall panels seem to be fairly straightforward, in fact they are very difficult to 
reflect in a simple theoretical model. For this reason, it was decided to perform the 
appropriate numerical analysis. 

The 3-D model consists of two thin steel facings and a thick but flexible core is 
considered in the paper. The sandwich structure is mounted to the steel substructure 
by means of mechanical fasteners. The easiest conditions imitating such a fixation 
were tried in the created models. A slightly different issue is a method of loading 
the sandwich panel. Various cases were considered, including concentrated force or 
load spreading in a certain area. The important question is whether, besides torsion, 
the applied load causes yet another force. The action of the force applied to the 
external facing induces additionally bending of the facing (in-plane) as well as 
shearing of the core resulting from the transmission of the load towards the 
supports. This transmission is one of the most interesting and, to date, poorly 
recognized phenomena. In-plane bending of the facings in also hides many 
unknowns. First of all, it is a question of uniformity of the load distribution on both 
facings. Second, there is some uncertainty about the proportions of the “sandwich 
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beam” dimensions. A 3-D layered structure is often treated simply as a beam, 
although in the case in question it is closer to the slab structure. Finally, the effect 
of the local instability of thin facings should also be taken into account. So far, in 
engineering practice, the impact of in-plane bending of the facings (including the 
influence of this bending on local instability of facings) was simply neglected.  

All of the above described aspects make the full interpretation of even the best 
performed numerical simulations very difficult. Despite this, this paper attempts to 
gradually organize the above described mechanical effects and parameters into the 
mechanics of layered structures, generated stresses and the safety of use of 
sandwich panels. 

Keywords: sandwich panels, torsion, numerical simulations, finite element method, 
boundary conditions 
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Sandwich panels used in civil engineering consist of two thin steel facings and  
thick but a light flexible core [1]. It is a well-known fact that solar collectors, 
photovoltaic panels and work platforms are installed directly to sandwich panels, 
causing multiple static concentrated loads. 

The aim of this this paper is to present numerical simulations of the behavior of 
sandwich panels loaded by multiple static concentrated loads. The solutions are 
compared with the results obtained using the effective width method. 

In these conducted simulations a single-span plate of length L = 2 m, width 
B = 1 m and depth D = 0.12 m is considered (Fig. 1). The plate is subjected to 
concentrated loads F1 and F2. The forces are located at points (x1, y1) and for 
(x2, y2), respectively. The system is simply supported at the two opposite edges. The 
right support has ability to move horizontally. 

 

 
Fig. 1. Geometry and boundary conditions of sandwich panel 

The facings have a thickness t = 0.5 mm. The material of facings is defined as 
isotropic perfectly elastic material with modulus of elasticity EF = 210 GPa, 
Poisson ration νF = 0.3 and yield strength fy = 280 MPa. The core has a thickness 
d =119 mm. The core is defined as homogeneous and isotropic material with 
modulus of elasticity EC = 8.16 MPa and νC = 0.02. The load values are F1 = 1 kN 
and F2 = 1 kN. 
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Numerical model was created as a 2D composite shell (three-layered shell). The 
model was discretized using four-node, conventional shell elements S4R, the mesh 
size was constant and equal to 0.10 m. This model was presented in [2]. The loads 
F1 = 1 kN and F2 = 1 kN were applied to single nodes. 

The solutions obtained for numerical model were compared with the results 
obtained using the effective width method [3]. To get results from effective width 
method a superposition principle was used. 

Comparing solution specified by EWD method and 2D numerical model, some 
discrepancies can be seen. To juxtapose it with work [4], it is observed that 
engineering EWD method is relatively safe but there are seem to be introduced 
some improvements in case of subjecting panels to multiple static loads. The 
obtained results encourage to conduct further analysis into the behaviour of 
sandwich panels subjected to multiple concentrated loads. 

Keywords: sandwich panels, concentrated loads, numerical simulations, finite element 
method, the effective width method 
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Young measures appear in many engineering problems. In nonlinear elasticity, 
for example, we minimize the energy functional of the form 

 ��M� = � 
��, M���, ∇M����� \�, (1) 

where: 
- Ω is elastic body under consideration; 
- M is its displacement; it is usually an element of a suitable Sobolev 

space �; 
- 
 is the density of the internal energy. 

The so called direct method is a widely used method of minimizing such 
functionals. 

However, energy functionals of certain materials, as laminates or various types 
of alloys, do not attain their infima. It is connected with what engineers call 
‘microstructure’ and is caused by the fact, that the density of the internal energy is 
not quasiconvex with respect to the third variable. The minimizing sequences �M��  
are functions of a highly oscillatory nature and are divergent in the strong topology 
of �, but they are weakly∗convergent. It has been discovered by Laurence 
Chisholm Young in [4], that the weak* limits of the sequences of the form  

�
��, M����, ∇M������ are in general not ‘common’ functions with domain of 

definition being points in an appropriate space, but families of countably additive 
regular set functions. The members of these families are probability measures, 
nowadays called the Young measures. The existence of a Young measure associated 
with a measurable function (or with a sequence of oscillating functions) relies on 
the Riesz representation theorem. However, calculating an explicit form of a Young 
measure is in general a very difficult task. 

The simplest form of a Young measure is a ‘homogeneous Young measure’. It is 
in fact a ‘one parameter family’, i.e. it does not depend on points of Ω. It serves  as 
a source of examples and in many real world cases it is the generalized minimizer 
of the considered integral functional, see for example [1] and [4]. 

 In [2] a relatively simple method of deriving an explicit form of  
a homogeneous Young measure is proposed. It avoids using complicated functional 
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analytic machinery. Instead, a change of variable theorem for multiple integrals is 
used. The theoretical foundations making this method possible is described in 
detail in [4]. It turns out that following this approach it is relatively simply to 
characterize weak �� convergence of the densities of homogeneous Young 
measures. Moreover, this convergence appears to be equivalent to the weak 
convergence of the sequence of the Young measures under consideration, 
understood as elements of a Banach space of regular countable additive scalar 
measures (with a total variation norm). An application of the results to the 
Lebesgue-Stieltjes type integrals is also given. 

Keywords: homogeneous Young measures, weak convergence of functions, weak 
convergence of measures 
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In the paper free vibration of axially functionally graded (FG) beams is 
analyzed within the framework of the Euler-Bernoulli beam theory. The proposed 
method relies on replacing functions characterizing FG beams by piecewise 
exponential functions. The analytical solution of the problem is used for numerical 
analysis. The effect of selected parameters characterized the system on the free 
vibration frequencies for different boundary conditions is investigated. 

Functionally graded beams are composites characterized by the volume fraction 
of different materials which is varied continuously with the thickness and/or the 
length of the beam. Through an appropriate selection of the volume fraction the FG 
beam with expected thermal and mechanical properties can be obtained. Therefore, 
the FG beams can be used in various engineering applications. 

The literature on vibration analysis for axially graded beams is very extensive. 
For example, Wu et al. [1] applied the semi-inverse method to find the solutions to 
the dynamic equation of axially functionally graded simply supported beams. 
Huang and Li [2] studied free vibration of axially functionally graded beams by 
using the Fredholm integral equations. Hein and Feklistova [3] applied the Haar 
wavelet approach to analyse free vibration of axially functionally graded beams. 
The differential transform element method and differential quadrature element 
method of lowest order were used to solve free vibration and stability problems of 
FG beams by Shahba and Rajasekaran [4]. The exact solution to free vibration of 
exponentially axially graded beams was presented by Li et al. [5]. Explicit 
frequency equations of free vibration of exponentially FG Timoshenko beams were 
derived by Tang et al. [6]. Huang et al. [7] presented a new approach for 
investigating the free vibration of axially functionally graded Timoshenko beams. 
By applying auxiliary functions they transformed the coupled governing equations 
into a single governing equation. Moreover, there are some studies related with the 
problem of free vibration of FG beams, where the gradation of material is assumed 
to be along any of the possible Cartesian coordinates, see Alshorbagy et al. [8], 
Shahba et al. [9]. A review of researches on FG beam type structures can be found 
in Chauhan and Khan [10]. 

In this contribution a new approach to free vibration analysis of FG beams with 
arbitrary axial inhomogeneity. The main idea presented here is to approximate FG 
beam by an equivalent beam with piecewise exponentially varying material and 
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geometrical properties. The proposed method is a certain generalization of the 
approach presented in Kukla and Rychlewska [11]. 

Keywords: axially graded beam, free vibration, Euler-Bernoulli beam theory 

References 

[1] Wu L., Wang Q., Elishakoff I., Semi-inverse method for axially functionally graded beams with 
an anti-symmetric vibration mode, Journal of Sound and Vibration, 2005, 284, 1190-1202. 

[2] Huang Y., Li X.-F., A new approach for free vibration of axially functionally graded beams 
with non-uniform cross-section, Journal of Sound and Vibration, 2010, 329, 2291-2303. 

[3] Hein H., Feklistova L., Free vibrations of non-uniform and axially functionally graded beams 
using Haar wavelets, Engineering Structures, 2011, 33, 3696-3701. 

[4] Shahba A., Rajasekaran S., Free vibration and stability of tapered Euler-Bernoulli beams made 
of axially functionally graded materials, Applied Mathematical Modelling, 2012, 36, 3094-
3111. 

[5] Li X.-F., Kang Y.-A., Wu J.-X., Exact frequency equations of free vibration of exponentially 
functionally graded beams, Applied Acoustics, 2013, 74, 413-420. 

[6] Tang A.-Y., Wu J.-X., Li X.-F., Lee K.Y., Exact frequency equations of free vibration of 
exponentially non-uniform functionally graded Timoshenko beams, International Journal of 
Mechanical Sciences, 2014, 89, 1-11. 

[7] Huang Y., Yang L.-E., Luo Q.-Z., Free vibration of axially functionally graded Timoshenko 
beams with non-uniform cross-section, Composites: Part B, 2013, 45, 1493-1498. 

[8] Alshorbagy A.E., Eltaher M.A., Mahmoud F.F., Free vibration characteristics of a functionally 
graded beam by finite element method, Applied Mathematical Modelling, 2011, 35, 412-425. 

[9] Shahba A., Attarnejad R., Zarrinzadeh H., Free vibration analysis of centrifugally stiffened 
tapered functionally graded beams, Mechanics of Advanced Materials and Structures, 2013, 20, 
331-338. 

[10] Chauhan P.K., Khan I.A., Review on analysis of functionally graded material beam type 
structure, International Journal of Advanced Mechanical Engineering, 2014, 4, 3, 299-306. 

[11] Kukla S., Rychlewska J., Free vibration of axially functionally graded Euler-Bernoulli beams, 
Journal of Applied Mathematics and Computational Mechanics, 2014, 13, 1, 39-44. 

 

  



Mathematical Modelling in Physics and Engineering 
 

123 
 

MULTI-LAYER NEURAL NETWORKS FOR SALES 
FORECASTING 

Magdalena Scherer 

Department of engineering management, Czestochowa University of Technology,  
 Czestochowa, Poland 
mscherer@zim.pcz.pl 

Forecasting and the ability to assess future events play a key role in business 
operations. The uncertainty of the future and the time interval from the moment of 
the decision to its result, makes it necessary to find appropriate prognostic 
methods, which are burdened with the smallest error and are simple and 
inexpensive to use. With accurate and accurate forecasting, decision making 
becomes much easier, making enterprise management easier. Forecasts should be 
the basis for creating business action plans. Still, new methods of forecasting are 
being sought, where the results will be as small as possible, and the methods will 
be simple and cheap to use. 

Neural networks are mathematical structures and their software or hardware 
models. The inspiration for their construction was the natural neurons connected by 
synapses and the entire nervous system, and in particular its central point – the 
brain. Artificial neural networks can be used in a broad spectrum of data processing 
issues, such as pattern classification, prediction, denoising, compression and image 
and sound recognition, or automation. 

Neural networks have the ability to process incomplete data and to provide 
approximate results. They enable fast and efficient processing of large amounts of 
data. They are resistant to errors and damage. 

 
Fig. 1. Artificial neuron model 
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The basic element of the neural network is the neuron [4]. Figure 1 shows the 
neuron model, where > is the number of inputs to the neuron, ��, … , �� are input 
signals, N�, … , N� are synaptic weights, � is the output value, N� is bias and 
 is 
activation function. The operation of the neuron can be described using the formula 

 � = 
�<�, (1) 
where 
 < = ∑ �#�#&� N# (2) 

The input signals ��, … , �� are multiplied by the corresponding weights N�, … , N�. 
The resulting values are summed to produce a signal s. The signal is then subjected 
to an activation function that is usually nonlinear to create many layers. There are 
many models of neural networks. The neural network division can be made taking 
into account the following factors: learning method, direction of signal propagation 
in the network, type of activation function, type of input data and method of 
interconnection between neurons. 

Neural networks consist of interconnected neurons. Depending on how these 
connections are made, three types of neural networks are distinguished: 
feedforward, feedback networks, convolutional and cellular networks. In 
feedforward, one-way networks, the flow of signals is always in one direction, 
from the input to the output. Neuron outputs from one layer are neuron inputs in 
the next layer. On feedback networks, also known as recursive, some of the output 
signals are simultaneously input signals. In networks of this type, the activation of 
the network by the input signal causes the activation of some or all of the neurons 
in the, so-called, network relaxation process. Therefore, in order to validate the 
operation of the network, a stability condition should be added. The stimulated 
network must reach a stable state where the baseline values of the neurons remain 
constant, this process should take place at finite time. On the other hand, in cellular 
neural networks, each neuron is connected to neighboring neurons. 

Most commonly used neural architecture, both in research and commercial 
models, are perceptron networks. These are unidirectional networks where neurons 
are grouped in at least two layers. The first layer is called the input layer and the 
last layer is the output layer. There may be one or more hidden layers between 
these layers. Signals are passed from the input layer to the output layer, without 
feedback to the previous layers. The diagram of the three-layer neural network is 
shown in Figure 2, where ��, … , ��denote input signals and ��, … , �� as output 
signals. 

The number of neurons in each layer is important in the operation of the 
network. Too many neurons increase the learning process. In addition, if the 
number of learning samples in relation to network size is small, the network can be 
"learned" and thus lose the ability to generalize knowledge. In this case, the 
network will learn the learning sequence "by heart" and will probably only 
correctly map the samples that were included in it. Therefore, after learning the 
network, we should check the correctness of its operation. For this purpose, a test 
dataset consisting of samples that were not present in the network learning process 
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is used. Only after testing it is possible to tell whether the network has been 
properly trained and is working properly. 

There are two methods of learning neural networks: supervised learning and 
unsupervised learning. Network learning involves enforcing a specific neural 
network response to the input signals. That is why a very important moment in 
research is the right choice of learning method. Supervised teaching, also called 
learning with a teacher, involves modifying weights so that the output signals are 
as close as possible to the desired values. Training data includes both input signal 
groups and desired values for responding to these signals. A special case of 
supervised learning is reinforcement learning, where the network is trained not to 
give exact values of the desired output signals, only the information or whether it 
responds correctly. Unattended learning, called non-teacher learning, is a self-
parsing study of dependence in a test set by a neural network. During learning, the 
network receives no information about the desired response. Training data contains 
only a set of input signals. Networks with such action are called self-organizing or 
self-associative. 

Neural networks can, on the basis of data, learn a broad spectrum of problems. 
They are better than traditional computer architectures in tasks that people perform 
naturally, such as image recognition or generalization of knowledge. Advances in 
computer technology and network learning algorithms have resulted in a steady 
increase in the complexity of tasks solved by neural networks. New architectures 
are also emerging, such as convolutional neural networks being able to classify 
hundreds of image classes. 

Neural networks are used to solve different problems [2][3]. However, every 
problem requires a proper network adaptation. An appropriate network topology, 
the number of neurons in layers, and the number of network layers must be 
selected. Next, we need to prepare a training and testing set. The network must be 
trained learn first and then the correct operation of the network must be verified. 

This paper concerns forecasting sales volume in monthly intervals in a medium 
Polish company. The data from previous months were used to train feedforward 
neural network (full-connected) with the backpropagation algorithm [1]. We 
achieved a good prediction accuracy what allows to use the outcome to increase the 
effectiveness of the company management.  
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A biometrics system for identifying individuals using the pattern of veins in  
a forearm was proposed. The system has the advantage of being resistant to forgery 
because the pattern is inside a forearm. Infrared light is used to capture an image of 
a forearm that shows the vein patterns, which have various widths and brightness 
that change temporally as a result of fluctuations in the amount of blood in the 
vein, depending on temperature, physical conditions, etc. The proposed method 
extracts the finger-vein pattern from the unclear image by using line tracking that 
starts from various positions. The proposed method extracts the forearm-vein 
pattern from the unclear image by using line tracking that starts from various 
positions. The algorithm described is a component of the whole system, which is 
based on the pattern of the veins of the palm and forearm. 

Image processing techniques can be used to enhance blood vein portion of 
captured image of the forearm. Image enhancement is one among the most widely 
researched area of digital image processing. The primary purpose is to produce 
image of better quality and interpretability from the original image. Various 
techniques in image processing have been widely used in divergent applications, 
such as biomedical, biometrics and many others. There are different approaches 
introduced for blood vein identification and enhancement. In work [1] they 
proposed a method for real-time blood vein enhancement by capturing an infrared 
image of blood vein. But a costly camera and processing equipment are used to 
capture and process vein images. In work [2], authors used background reduction 
filter for vein contrast enhancement of finger vein patterns captured in near-
infrared regions for personal identification. A Method for Hand Vein Recognition 
Based on Curvelet Transform Phase Feature used Curvelet transform of the region 
of interest and encoded the Curvelet coefficients phase variance, and evaluate the 
Chi-square distance of coding histogram for vein recognition [3]. Image 
Restoration and Enhancement for Finger-Vein Recognition by authors of work [4] 
followed image processing by using Gabor filters. In above cases they took images 
using transmitted IR rays by placing IR sources below hand and took images of top 
part of hand. The literature [5], discusses hand vein pattern recognition using an 
image descriptor for biometric applications. For the biometric application, only the 
statistical structure of the vein is required, rather than the exact contours of the 
vein. In most of the studies, blood vein pattern of fingers or palm is extracted as an 
alternative to fingerprints used in biometry [6-11]. In such cases the exact structure 
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need not be extracted as only the pattern is necessary for biometric applications. 
Apart from this, infra-red imaging commonly utilises transmitted infra-red images 
which has a higher visibility of veins. Hence, better results can be obtained from 
simple thresholding and normal enhancement techniques. In antecubital fossa, 
taking transmitted IR images are not possible. Hence reflected near infrared 
images, which has very low visibility of veins, are used in this research. The 
proposed algorithm follows a different approach for blood vein identification and 
enhancement efficiently. The method is mainly based on analysis of contrast and 
thresholding. 

In this paper, an efficient method for enhancement of blood vein on the forearm 
is devised with the help of contrast limited adaptive histogram equalisation. The 
image captured in near-infrared region is converted into grey scale and made to 
undergo to achieve an amplification limited contrast enhancement [12] of all the 
objects in the image.  The blood vein is extracted from the image using 
thresholding method. Erosion is performed for better accuracy of vein segments 
identified, and region of interest (ROI) is identified to increase the efficiency of the 
blood-vein detection. 

Infrared image acquisition of forearm 

NIR image acquisition is done with the help of a modified digital camera. The 
modification is done in by replacing IR filter of the camera placed in front of 
charge coupled device with a visible light filter. IR flash is used for uniform 
illumination of hand and took images with the help of reflected IR signals from the 
forearm. The image stored in JPEG format is shown in Figure 1.  

 

 
Fig. 1. Image captured using modified camera 

This captured image is processed for blood vein enhancement. Initially, the 
image was pre-processed and then converted RGB image to greyscale. The 
intensity level is expressed within the range 0 to 255 in the case of 8-bit image. The 
blood vein part in forearm image is not distinctly visible compared to body skin 
part. For vein image enhancement and extraction it is needed to distinguish blood 
vein from other skin. Histogram equalization process will help to enhance the 
contrast of each object in particular images separately. This process will stretch out 
intensity ranges [12]. It is done by mapping of intensity distribution (given 
histogram) to another distribution with a wide range of intensity values. Blood-vein 



Mathematical Modelling in Physics and Engineering 
 

129 
 

images, which are low contrast dark locales, global histogram equalization, won't 
work viable. Even if the forearm blood vein images are enhanced by using adaptive 
histogram equalization, vein edges are might not be properly visible in most of the 
cases. Additional imaging techniques are needed to extract the shape of the veins. 
Binarization and morphological denoising create a clearer picture of the veins. For 
proper extraction of blood veins from the surrounding skin, selection of threshold 
levels is crucial. Thresholding algorithm helps for finding suitable threshold level 
that efficiently extracts blood veins from the image. This algorithm performs image 
thresholding based on clustering [13]. By assuming the image consists of two 
classes of pixels, this algorithm calculates an optimal threshold value to separate 
the classes such that their intra-class variance is minimum and inter-class variance 
is maximum. Figure 2 shows the original loaded image. The binary image is shown 
in Figure 3. 

 

 
Fig. 2. Loaded original image 

 
Fig. 3. Image after binarization 

Morphological operations have included closure operations and the removal of 
minor disturbances. It is needed to perform morphological operations on the vein 
part extracted to get a more precise shape of the vein. Dilation and Erosion are 
mainly carried out in the post-processing for this purpose. Dilation adds pixels to 
the boundaries of objects in an image, while erosion removes pixels on object 
boundaries. Here erosion is performed, as the operation helps to remove the 
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unwanted sections which may get extracted with the vein. The result of the 
morphological transformations is shown in Figure 4. 

 

 
Fig. 4. Image after morphological transformations 

The captured images for processing may contain portions other than forearm 
part which is not the region of interest. To find region of interest (ROI), the 
captured image is thresholded with a median pixel value around 100. This is the 
separating pixel value between skin and background surface. The portion of the 
skin where the vein is present is needed to be processed. Hence, surface part is 
discarded, and the region of interest is extracted. 

Lines are determined by the yellow-green or blue-red markers. Different colors 
represent different directions of veins. The result of this operation is shown in 
Figure 5. 

 

 
Fig. 5. Designated veins, marked by colorful crosses 

The next operation involves removing lines for which the number of markers in 
one string is too small. Such processing leaves only the main vein patterns that 
have the greatest impact on the quality of recognition. The image after removing 
the small lines is shown in Figure 6.  
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Fig. 6. Final processing effect 

Forearm blood vein identification is quite difficult. This proposed algorithm 
extracted and enhanced blood vein from forearm hence providing more visibility 
apart from skin. The algorithm tested infrared forearm images and result shows the 
efficiency of this algorithm. It is an element of the entire system that uses the palm 
vein and forearm to identify and verify users. 

Keywords: user identification, user verification, palm vein forearm vein  
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The studies on an influence of the parameters of the loading heads on the 
loading capacity of the cracked column subjected the specific load realized by the 
circular elements of heads are presented in this paper. The crack is simulated by 
means of the rotational spring. The boundary problem is formulated with the use of 
the minimum total potential energy principle on the basis of which the differential 
equations as well as natural boundary conditions are obtained. The main scope of 
investigations is to estimate whereas it is possible to increase the loading capacity 
of the cracked system by means of proper selection of the parameters of the loading 
heads. 

In the figure 1 the investigated system is presented. The external load is realized 
by means of the loading heads with circular outline. The presence of the crack 
divides a column into two elements. During numerical calculations the crack is 
always opened and is simulated by the rotational spring of C stiffness which is 
calculated with consideration of [1]. The continuity of transversal and longitudinal 
displacements as well as bending moments and deflection angles is satisfied by 
natural boundary conditions in the point of crack presence. The total length of the 
structure is l=l1+l2. The loading head of radius R can move smoothly in the vertical 
direction. The radius R has a center in the point localized below the loaded end of 
the column on its undeformed axis through which passes the line of P force action 
(pole point). The radius of the receiving head is r and the distance between the end 
of the column and the contact point of both heads is l0. The adequate combination 
of the parameters of the loading heads may lead to the systems subjected to Euler’s 
load – comp. [2]. 
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Fig. 1  The investigated column and shapes of heads 
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Analytic Hierarchy Process (AHP) is the method which supports people 
decisions, which consists on the best choice from the possible alternatives. In the 
AHP the decision maker (DM) answers the question in order to comparing every 
two among all possible alternatives in respect to any criterion. In this way the 
pairwise comparison matrix (PCM) arises. In this matrix, element in i-th raw and j-
th column says how much more (or less) DM prefer i-th over j-th alternative [1]. 

PCM consists of numbers which correspond to DM answers about his judgment 
of preference. However DM answers are expressed in "linguistic values" not 
directly in numerical values. So we need convert the answers in common language 
to numbers. For this purpose priority scales are used. T. Saaty  introduce such a 
scale, called Fundamental Scale (FS) [1], which consists of 9 natural numbers and 
its reciprocals which are connected with certain linguistic expressions: 

 FS = {�
¢ , �

£ , �
¤ , �

¥ , �
¦ , �

§ , �
¨ , �

� , 1, 2, 3, 4, 5, 6, 7, 8, 9} (1) 

Despite of some negative opinions of using FS [2],[3], it is the most popular scale 
in AHP practice. 

Apart of FS we investigate any other scale. The extension of FS to the set of 50 
natural numbers scale is called in our presentation Extension Scale ES�50�:  

 ES�50� = ³ �
¦� , �

§¢ , �
§£ , ⋯ , �

¨ , �
� , 1, 2, 3, … , 49, 50´ (2) 

The ES�50� is similar to the FS but allows comparing more different alternatives 
without dividing alternatives on classes (idea of Saaty [1]).  

A little less popular than FS but also often encountered in literature is the 
Geometric Scale (GS) [4]. In difference to the previous scales, GS consists of 
numbers which create geometric sequence. We adopted GS�1.2,10�, it is GS 
consists of 10 succeeding natural powers of 1.2 and theirs reciprocals:  

 GS�1.2, 10� = {1.2%��, … , 1.2��} (3) 

The numbers in GS, in difference to FS, can be interpreted as actual ratios between 
related linguistic expressions. 
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Interesting case for us is without rounded to scale PCM. Obviously, this case is 
not observed in practice but it help us to find out more information about impact of 
assumed scales on the final decisions quality. 

In common AHP practice DM compares every pair of alternatives with respect 
to any criterion only one time (if you would compared A to B you do not have to 
compare B to A). It seems quite logical that reliable DMs to the same extent prefer 
alternative A to B as do not prefer B to A. However in practice when DMs compare 
A to B and B to A, they often give no reciprocal answers so in our paper we 
consider both cases: reciprocal and no reciprocal matrices [2],[4],[6].  

The purpose of AHP is ordering the alternatives. In order to that the vector of 
numbers which indicates relative importance of alternatives is calculated. Such  
a vector which consists of indicating importance numbers we called priority vector 
(PV). We use in our research the Raw Geometric Mean Procedure to obtain PV 
from PCM [8]. 

The issue which we investigate is impact of the adopted scales for quality of 
decision in AHP. The natural indicators of scale properties are values of errors 
appearing in PVE when we use particular scales. For calculate values of relative 
errors in PV and frequency of appearing errors in ordering PV we run Monte Carlo 
experiments, which are based on A. Grzybowski experiments [2]. We observe an 
explicit impact of the adopted scales and PCM reciprocity to amount of errors in 
PV. When we look at obtained in our experiments results, it seems obvious, that 
adopted certain scales give better results with less amount of errors than the other.   

Keywords: Analytic Hierarchy Process, Priority Scales, Pairwise Comparison  
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Abstract. Formal methods are intended to systematize and introduce rigor into all 
the phases of software development. The semantics of programming languages is 
important for software engineers and IT experts  to understand the meaning of 
programs and/or behaviour of them. The programming language used for software 
development furnishes precise syntax and semantics for the implementation phase. 
Based on our experience with teaching formal semantics of programming 
languages we have prepared a packet of modules, that helps us and to students to 
understand the most popular semantic method - structural operational semantics. 
The first module translates a program written in a programming language to 
abstract machine code, the second module makes reverse translation from code to 
program source text and the third one emulates stepwise execution of abstract 
machine code. Our packet can be easily extended for other semantic methods. 

1. Introduction  

Software engineering is a young engineering discipline that is different in many 
respects from the classical engineering fields. One of preconditions for efficient 
implementation of software development methods is understanding the formalism 
without which these methods could not be developed [1]. On the present the 
computer science increases making use of formal models to help the understanding 
of complex software systems and to reason about their behaviour, in particular to 
verify the correctness of the system (or at least some desired aspects of its 
behaviour) with respect to a formal specification. Then more and more tools 
support software development on the basis of formal methods. All of these tools 
and techniques are well grounded in formal models of system execution which are 
rooted in the formal semantics of the underlying programming languages. The term 
formal methods pertains to a broad collection of formalisms and abstractions 
intended to support a comparable level of precision for other phases of software 
development. While this includes issues currently under active development, 
several methodologies have reached a level of maturity that can be of benefit to 
practitioners. The necessity of formal methods education has developed from its 
increasing assimilation into systems development within industry [2]. By providing 
precise and unambiguous description mechanisms, formal methods facilitate the 
understanding required to coalesce the various phases of software development into 
a successful endeavour. To help future generations of software developers and 
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engineers profit from these exciting developments, however, it is necessary to 
adequately educate and train them in the basics of formal logic and formal 
language semantics.  

Semantics is an integral part of formal definition of a programming language. 
Semantics provides a meaning of a program and can help during its design and 
implementation. Now several semantic methods are known, e.g. denotational 
semantics, operational semantics, action semantics, axiomatic semantics, 
categorical semantics and others. In this paper we concern with software which 
could help to understand an operational semantics, a very popular semantic method 
which provides meaning of the execution steps of a program and it is better 
understandable for those who are not familiar with mathematics. 

Operational semantics was introduced by Gordon Plotkin in [3]. It is widely 
used also by practical programmers. This method defines a meaning of every step 
of program execution by transition relations between states before and after a given 
statement execution. In contrast with other semantic methods we have quite 
positive experience in teaching this method, because it is understandable for 
students and software engineers as it requires minimal knowledge of mathematics. 
Operational semantics incorporates abstract implementation on an abstract machine 
that enables partial verification of programs [4]. An important tool for explanation 
this method and for easy understanding by students seems to be a packet of 
programs illustrating translation from program text to the code of abstract machine 
and vice versa together with step by step execution. 

The aim of our paper follows from the ideas mentioned above. We present our 
packet consisting of three modules. Each of modules behaves as separated program 
and can be run independently. The first one translates a program text written in the 
simple language Jane to a code (sequence of instructions) of abstract machine, the 
second one performs the reverse process, i.e. it provides a program text in Jane 
from a code of abstract machine and the third one is an emulator of the stepwise 
execution of a code on abstract machine. These three programs afforce in 
significant measure the appreciation of this method by students and help them to 
achieve skills in defining operational semantics of programming languages. 

Sections 2, 3 and 4 concern with the design and implementation of three 
programs: from program text to code, from code to program text and the stepwise 
execution of AM code. This integrated packet has intermediate output that is 
intended to the extension for other semantic methods. 

2. Compiler from Jane to AM code 

We briefly describe in this section the specification and implementation of the 
first module - a compiler from language Jane to Abstract Machine (AM) code and 
algorithms of its primary and secondary functions. 

This program is designed as an application, that provides the translation of  
a program written in Jane language into the code of AM. 

An input is a source text, that represents a program in Jane. We do not consider 
variables' declarations here, so the program consists only of a body. An output is  
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a final code which is either a sequence of AM instructions or XML form. The 
machine comprises only a program store. 

The module consists of the standard compiler phases according to [5]. The main 
function of lexical analysis in this application is tokenization, i.e. dividing the 
program into valid tokens, elimination of all unnecessary white characters and 
checking of the number of brackets. In the syntax analysis we use the top-down 
parsing method with error recovery which consists of a set of recursive procedures 
that gradually examine the syntax in more and more detail. A recursive descent 
parser contains a possibly recursive procedure for each syntactic construct. Then 
each statement is checked if it matches the appropriate regular expressions. For 
each statement of Jane language an unique regular expression is defined. If the 
cycle statement (while-do) or conditional statement (if-then-else) are 
found, they are matched recursively with appropriate regular expressions. After the 
syntax analysis, a very simple semantic analysis is performed: the type mismatch 
control in assignments and Boolean conditions in statement constructs. 

The compiler is able to generate two kinds of output, based on a user's choice. 
The first kind of output is a sequence of instructions in AM code. This function of 
compiler is the default one. The AM instructions are generated according to the 
translation rules (listed in [6]). The second kind of output is an XML document 
developed for future extension of the teaching software. It could allow to take an 
XML form of an input program and to use it as an input for the other semantic 
methods, e.g. a construction of the derivation trees in natural semantics [7] or  
a graphical representation of program in categorical semantics [8] etc. 

The module consists of the classes. The main class GenerateJPJtoAM_UI 
provides communication and interaction with user. The class InputTokenizer 
represents a lexical analysis. The class RegexPatterns is used in syntax analysis and 
it provides the regular expressions for matching the keywords of the Jane language 
and expressions. Class Generator is used as generator of instructions. Particular 
classes for generating the instructions for each statement are derived from the main 
generator class. These classes define the following translation rules: 

• class StoreGenerator - for the assignment; 
• class SkipGenerator - for the empty statement; 

• class IfGenerator - for the conditional statement; 

• class WhileGenerator - for the logical prefix cycle; 
• class BooleanGenerator - for the Boolean expressions. 

The class XmlGenerator is used for generating the XML format of a source 
program. The general class diagram is depicted in Fig. 1. 
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Fig. 1 Class diagram 

3. Reverse compilation from AM code to Jane 

The second module is a decompiler from AM code into Jane source. This 
program allows to reconstruct code in Jane when a sequence of instructions in AM 
code is given. Decompilation is the reverse process of compilation i.e. creating 
higher level language code from machine/assembly language code used mainly in 
refactoring. At the basic level, it just requires to understand the machine/assembly 
code and rewrite it into a high level language. Although there are many questions 
about ethics of decompilation, we use in education simple decompilation from AM 
code to Jane only for teaching purposes. 

The program loads an input and starts with splitting the input sequence into 
particular instructions storing them in a  data structure list. The compound 
instructions BRANCH and LOOP are considered also as separate instructions 
together with their contents, where other recursive splitting to the sequences of 
instructions are applied and new instruction lists are built up. 

The next step is recognizing the instructions in the list and reconstructing the 
Jane code. Each instruction is matched with patterns. If an instruction representing 
an arithmetic or Boolean operation or instruction representing a value is found, an 
appropriate symbol or a value is stored in a stack until the end of expression is 
being reached. The correct ending of any well-formed expression is either the 
instruction STORE (assignment statement), or the instruction BRANCH (conditional 
statement), or the empty string (LOOP instruction). At the end the expression is 
built up from the stack. 

If the expression is ended by the instruction STORE, then the arithmetic 
expression is constructed from stack as right-hand side of the statement, after that 
the content of the stack is released. If the expression is ended by the instruction 
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BRANCH, then Boolean expression is constructed from the stack and included into 
if-then construction, then two other recursive instruction parsing runs are 
executed: the first one for then-branch, the second one for the else-branch. If 
the instruction LOOP is found, then also two other recursive code constructions are 
executed: the first for the Boolean expression, the second one for the body of cycle. 
Then both strings are included into while-do construction. If the instruction 
EMPTYOP is found, an empty statement skip is provided as the output. Finally, 
when the code reconstruction is finished with success, the code in Jane can be 
stored in a text file. 

4. Emulator of AM 

The last module in our packet is an emulator of AM code. The program is 
implemented in Java programming language, too. 

The program loads an input code in the form of AM instructions. By their 
processing and splitting into several steps, the output is produced by illustrating the 
changes performed in an expression stack and states after execution of particular 
instructions. 

At the beginning, an input sequence of instructions is read from the file or is 
typed manually. After that, the code is analysed by matching the patterns of 
instructions. The sequence is split into separate instructions. Compound 
instructions BRANCH and LOOP are considered as separate instructions together 
with the other sequences of instructions. During this analysis all variables in an 
input source are found and written into table of variables. In this phase, if a syntax 
error is found, the user is notified about the problematic part of the code. If the 
syntax checking is completed without errors, then variables can be initialized by 
user and the analysed AM source is ready to be executed. 

The execution of code provides a complete code processing respecting the 
semantics of instructions listed in [6]. During the stepwise execution the new states 
on a stack and in memory state are computed. The program displays an actual AM 
configuration before and after the execution of an actual instruction. 

Although the program is syntactically correct, it can contain unknown (hidden) 
fault [9]. For example, during the program execution an infinite cycle can occur. 
The emulator identifies the number of loops and if this number is greater or equal 
to the upper limit of using the virtual machine stack, then the cycle is considered 
and marked as infinite. At the end of program execution, emulator allows to save 
the actual state of AM into file, which contains each step of execution together with 
a state of the stack and memory state – trace record and memory snapshots. 

5. Conclusion 

We presented in this paper a packet of three modules. Our software packet is 
devoted to course on Semantics of programming languages. The main motivation 
for its preparation was to increase an understandability of formal semantic 
methods, namely structural operational semantics. All three  modules are 
implemented in Java, in an object-oriented manner and they are ready to be used 
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during the lectures, laboratory exercises and also for individual studying. The 
design of this packet enables also its future extensions for dealing with other 
semantic methods. This software can be useful also for practical programmers in 
the development process of program systems. 

Keywords: abstract machine, compiler, learning software, structural operational 
semantics 
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Due to its complexity and parallel changes of many parameters in time,  
the carburizing process, which has been used for years, is very difficult to be 
described mathematically in universal terms [1,2]. 
Carburizing is understood to mean a thermo-chemical process of diffusion 
saturation of the surface layer of the material. Saturation of a surface layer of steel 
with carbon atoms is aimed improving the tribological and corrosion resistance and 
strength [3]. 

The most popular technique today is carburizing using the gas phase,  
on carburizing and liquid carburizing [4]. All the above types of carburizing are 
diffusion-based processes. A prerequisite for diffusion is the generation  
of carburizing atmosphere, with its carbon potential being higher than unity i.e.  
the atmosphere should be saturated with carbon atoms higher than carbon content 
present in the carburized material. The thickness of the carburized layer  
is determined chiefly by carburizing time and temperature of the carburized 
material [5-7]. For most steels, gas carburizing is carried out at the temperature  
of 880 - 920oC [6]. Apart from temperature and time, the results of this process are 
also determined by carbon potential and the flow of medium gases termed  
the diffusion stream, which is formed by the particles of a solid (e.g. sand or Al2O3) 
maintained in a suspension by a hot saturating gas flowing through a bed from  
the bottom upwards.The carbon saturation process is dependent on temperature, 
time and a concentration of the atoms gradients. These factors have big influence 
on material properties such as thickness and structure of the surface layer, which is 
obtained by carrying out the carburizing process.  

The diffusion processes are described by Fick's laws, because in this process,  
the stream of atoms diffusion is variable at the time, in this case is suitable using 
Fick's second law:  

 
¶∅
¶¸ = 
 ¶¹∅

¶6¹  (1) 

where  
Φ - concentration  
x - distance from the source to the diffusing substance 
t - time 
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D - is a proportionality coefficient (diffusion constant, this coefficient is connected 
with the probability of atom jumping in a crystal lattice) 

    
 = 
�;%º»¼½   (2) 

where  
EA - activation energy  
k - gas constantdistance from the source to the diffusing substance 
T - temperature 
In practice, diffusion is not a one-direction, mass flow should be considered in 
three perpendicular directions, then the equation (1) takes the form 

¶∅
¶¸ = ¶

¶6 �
6 ¶∅
¶6� + ¶

¶¾ �
¾ ¶∅
¶¾� + ¶

¶¿ �
¿ ¶∅
¶¿�  (3) 

where Dx ,Dy ,Dz- directional diffusion coefficients. 
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Contemporary servers, terminals or other network communication devices use 
specially designed protocols to achieve important security objectives. Time 
analysis for those security protocols plays an important role. So far it has mainly 
been used in the form of time stamps without detailed analysis of time parameters. 

Every conscious network user realizes that inside such protocols safeguards are 
included to ensure that data transmission will be safe - data will reach the 
destination and will not be decoded, or taken over. On the other hand, 
administrators have an increasingly difficult task, because there are more and more 
users and data. The data often contain more and more sensitive information. The 
number of necessary encryption keys is growing. New protocols appear. Many 
parameters should be competently chosen: type of network protocol, level of 
security, and users' roles so that secure communication is available within 
a reasonable time. 

So far, the analysis of the security protocols focused mainly on one issue – 
whether the Intruder can carry out the attack upon some honest user or the whole 
network. Using different verification methods: simulation or formal modeling 
(inductive [9], deductive [2] and model checking [4]), it was proven whether the 
considered protocol is correct and resistant to the attack. There are several high-
profile projects linked with model checking of security protocols such as Avispa 
[1], SCYTHER [3] or native VerICS [7]. 

However, the mentioned methods and tools usually ignore one extremely 
important parameter in their analysis - the time. Suppose that we have a simple 
protocol consisting of three steps, and it was discovered that the attack upon this 
protocol can be executed in ten steps. It can be concluded that the protocol is not 
safe. However, the protocol can be secure using a time limit calculated for three 
correct steps. Many protocols designers intuitively began to add timestamps and 
IDs to protocols. But in fact, maybe it is sufficient that the administrator possesses 
the knowledge: at what time or interval the protocol will be safe. 

In [8] a new formal model of the protocols executions was proposed through 
which it is possible to test time-dependent security protocols correctness. This 
model is used by authors to study the authentication parameters. In Penczek and 
Jakubowska papers [5], [6] the network delays were taken into account. Their 
method was associated with the communication session proper time calculation. 
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Tested time constraints allow the indication of the time influence on the protocol 
security. Mentioned studies of Penczek and Jakubowska involved only a single 
session and have not been continued. 
Our previous studies with use of a synchronized network of automata and SAT 
techniques have been extended with the temporal aspect and time parameters. A 
model was developed showing the strengths and weaknesses of the tested protocol 
depending on the known parameters of time. It has been shown that even 
potentially weak protocols can be used with appropriate time constraints. We can 
also find a way to make it safer by strengthening the critical points. As part of the 
work we have implemented a tool that helps us in the mentioned work and allows 
to present some experimental results. 

Keywords: security protocols, modeling and verification, time analysis 
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The problem of numerical schemes stability is closely associated with  
a numerical error. The FDM scheme  is stable when the errors made at one time 
step of the calculation do not cause the errors to increase as the computations are 
continued [1]. If, on the contrary, the errors grow with time the numerical scheme 
is said to be unstable. The stability of numerical schemes can be investigated by 
performing von Neumann stability analysis. According to this theory, the 

approximation error carried by ,θ f
i j  (2D problem) at every node of space (i, j) and 

time f is assumed to have a wave form with the wave numbers denoted by s1, s2 and 
the amplitude by  δ: 

                                    ( ), 1 2θ δ exp , 1f f
i j i jI s x s y I = + = −                              (1) 

As time progresses, to assure  convergence, the amplitude of approximation 

error must be less than unity, i.e. ,θ 1f
i j <  [2]. 

As an example the well-known 2D Fourier equation in the form 

                                           ( ) ( ) 2, ,
, : ( , , )

T x y t
x y a T x y t

t

∂
∈Ω = ∇

∂
                                    (2) 

is considered. In this equation a =  λ/c is a thermal diffusion coefficient (c is a 
volumetric specific heat, λ is a thermal conductivity), T, x, y, t denote the 
temperature, spatial co-ordinates and time. 

On the external surface of the system the boundary conditions in a general form 

                                           ( ) ( ), ,
, : ( , , ), 0

T x y t
x y T x y t

n

 ∂
∈Γ Φ = ∂ 

                              (3) 

 is given ( / n∂ ∂ denotes a  normal derivative). 
The initial condition is also given 

                                                           00 : ( ,0)t T x T= =                                                       (4) 

Let us consider the domain oriented in Cartesian co-ordinate system covered by 
the rectangular differential mesh with steps h and k. Additionally f-1 and f denote 
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two successive time levels with step ∆t. We introduce the local numeration and   
the central point of the star is denoted as Pi,j, while the adjacent nodes as Pi+ 1,j, Pi-1,j, 
Pi,,j+1 and Pi,,j-1 . 

The FDM equation for node Pi,j  (explicit scheme) can be written in the form 

                      

1 1 1 1 1 1 1
, , 1, , 1, , 1 , , 1

2 2

2 2f f f f f f f f
i j i j i j i j i j i j i j i jT T T T T T T T

a
t h k

− − − − − − −
+ − + − − − + − +

= +  ∆  
               (5) 

or 

     ( ) ( )1 1 1 1 1
1, 1, , 1 , 12 2 2 2

2 2
1f f f f f f

i i i j i j i j i j

a t a t a t a t
T T T T T T

h k h k
− − − − −

+ − + −
∆ ∆ ∆ ∆ = − − + + + + 

 
        (6) 

Now, the formula (1) will be applied and then 
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( ) ( ){ }
( ) ( ){ }

1
1 2 1 22 2

1
1 1 2 1 1 22

1
1 2 1 1 2 12

2 2
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f f
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f
i j i j

a t a t
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I s x s y I s x s y
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k

−

−
+ −

−
+ −

∆ ∆    + = − − + +     

∆    + + + +   

∆    + + +   

   (7) 

or dividing by ( )1
1 2δ expf

i jI s x s y−  +   

                
( ) ( )

( ) ( )

1 12 2 2

2 22

2 2
δ 1 exp exp

exp exp

a t a t a t
Is h Is h

h k h

a t
Is k Is k

k

∆ ∆ ∆ = − − +  + −  +   
 

∆
 + −  

                   (8) 

Using the Euler formula one can written 

                  ( ) ( )1 22 2 2 2

2 2 2 2
δ 1 cos cos

a t a t a t a t
s h s k

h k h k

∆ ∆ ∆ ∆ = − − + + 
 

                 (9) 

and next 

                     ( ) ( )1 22 2

2 2
δ 1 1 cos 1 cos

a t a t
s h s k

h k

∆ ∆= −  −  −  −                            (10) 

Because 21 cos 2sin
2

 − =  
 

αα , therefore 

                              2 21 2
2 2

4 4
δ 1 sin sin

2 2

s h s ka t a t

h k

∆ ∆= − −                                 (11) 
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The condition ,θ 1f
i j <  leads to the system of inequalities 

                                2 21 2
2 2

4 4
sin sin 0

2 2

s h s ka t a t

h k

∆ ∆+ >                                    (12) 

and 

                            2 21 2
2 2

2 2
1 sin sin 0

2 2

s h s ka t a t

h k

∆ ∆− − >                                   (13) 

The first of them is the unconditional inequality, while the worst situation in the 

case of the second inequality takes place when 2 21 2sin 1 , sin 1
2 2

s h s k= =  and then 

                                                            
2 2

2 2
1 0

a t a t

h k

∆ ∆− − >                                                       (14) 

In this way the well-known stability condition for the linear parabolic equations is 
found. The physical interpretation of the last formula can be found in [3].  
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Hydraulic cylinders are certain kinds of motors, which converts the energy 
of pressurized hydraulic fluid to mechanical energy. For different number of stages, 
one-stage and multi-stage (telescopic) hydraulic cylinders can be found. This paper 
revolves around boundary problem of free vibrations of a hydraulic telescopic 
cylinder, subjected to Euler’s load. The computational model, formulated by 
Tomski, which refers to free transversal vibrations and static stability of cylinders 
were taken into account during the calculations [1]. Effect of torsional rigidity 
between following elements on characteristic curves was taken into analysis in this 
work. 

Scheme of hydraulic telescopic cylinder is presented in Fig. 1. The analysed 
system consist of n cylinders and piston rod. Hydraulic cylinder is analysed as  
a fully extended and simply supported on both ends. Overall length of the structure 
is defined as lC. Torsional rigidity of following elements (sealing and guiding) was 
modelled by rotational springs of CRi  stiffness. Stiffness of rotational springs 
are as follows: CR1 = CR2 = CR3 = CR4 = CR5 = CR. 

Diameter of the cylinders (outer dzi and inner dwi) were defined as: 

 2( ) 2( ) ; 2( ) 2( 1)zi t U R wi t U Rd d n i g n i g d d n i g n i g= + − + − = + − + − −  (1a,b) 

where  gU - thickness of sealing element; gR thickness of cylinder.  
Each element of the hydraulic cylinder is characterized by adequate flexural 

rigidity (EJ)i and mass per length unit (ρA)i. Mass of the hydraulic fluid, which fills 
the cylinders is (ρA)ci ((ρA)cn = 0), masses of sealing and guiding elements mi were 
taken into consideration. Elements of the structure marked as i = 1,2,…,n-1 
correspond to cylinders and the n-element correspond to piston rod.  

Results of numerical simulations, of free vibrations of the considered telescopic 
hydraulic cylinder were presented in the non-dimensional form , defined as: 

 ( ) ( )
( )
( )

2 42
*; ; ; ; CU R C C nR

GU GR
t t n n n

A lg C l Plg
c

d d EI EI EI

ω ρ
ζ ζ λ= = = = Ω =  (2a-e) 
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Fig. 1. Scheme of n-stage telescopic hydraulic cylinder subjected to Euler’s load 

 

Fig. 2. Characteristic curves on non-dimensional plane for different parameters of 
stiffness between elements  

On the basis of the obtained results it can be concluded that stiffness of the 
sealing and guiding elements has great influence on vibration frequency and 
critical load. The smaller rotational node stiffness the greater its influence on 
vibration frequency and critical load. On the basis of the proposed non-dimensional 
parameters the obtained relation load – vibration frequency is linear. The 
characteristic curves are parallel to each other at considered configuration of the 
system.  

Keywords: free vibrations, hydraulic telescopic cylinder, slender system 
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In this paper the problem of heat flow in the finite rod of length l  lying on the 
x-axis is presented. The ends of the rod are located respectively in points 0=Ax  

and lxB = . The beginning A of the rod is thermally insulated, while at its end B is 

kept constant temperature 0T . It was assumed that the cross-sectional dimensions 
of the rod are small enough, that at all its points temperature at any given time is 
the same. At the initial time 0=t  temperature distribution T  along the rod is 
defined by the function )(xf , where ( )lx ,0∈ . Changing the temperature in the rod 
is a function of position and time ),( txTT = [1]. The scheme of the problem is 
presented in Fig. 1. 

 T   

Fig. 1. Scheme of the problem 

The transient heat transfer in the rod is described by the equation of heat 
conduction in the form [2, 3]: 

 
2

2
2

T T
a

t x

∂ ∂=
∂ ∂

 (1) 

in which 

T 

x xA= 0 
xB= l  

T0 

T(x,0) 
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ρ
λ
c

a =2  (2) 

where: T  ]K[  – temperature, t  ]s[ – time, λ  






msK

J
 – the coefficient of thermal 

conductivity, c  








kgK
J

– specific heat, ρ  





3m

kg
– density. 

Equation (1) is supplemented by the boundary conditions of the first and second 
kind [2, 3]: 

 0),( TtlT =  , (3) 

 
( )

0
,0 =

∂
∂

x

tT
 (4) 

The initial condition is also defined: 

 ( ) )(0, xfxT =  (5) 

In order to determine an analytical solution of equation (1), under such the 
boundary conditions (3), the new function ( )txs ,  is introduced: 

 sTT += 0  (6) 

Consequently, the boundary conditions (3)-(4) take the form: 

 ( ) 0, =tls  (7) 

 
( )

0
,0 =

∂
∂

x

ts
 (8) 

while the initial condition:(5) 

 ( ) 0)(, Txftxs −=  (9) 

To obtain an analytical solution of equation (1) of form:  

 2

2
2

x

s
a

t

s

∂
∂=

∂
∂

 (10) 

Fourier method is used [4]. A particular solution of the equation (10) in the form 
of the function of two variables is sought, where the first depends on x  while the 
second is the function of t . When the function ( )txs ,  is found then condition (9) is 
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used. Assuming that 0)( =xf  the following analytical solution of equation (1) is 
obtained: 

 ( ) 1

1

0
0 1cos

12

14 22 +
∞

=

− −
−

−= ∑ n

n
n

ta xe
n

T
TT n γ

π
γ  (11) 

where: ( )
l

nn 2
12

πγ −=  for ,...2,1=n .  

To obtain a numerical solution of equation (1) the finite element method is used. 
Equation (1) is multiplied by the weighting function w  and integrated over the 
length of the rod: 

 02

2

=
∂
∂−

∂
∂

∫∫
B

A

B

A

x

x

x

x

dx
t

T
wcdx

x

T
w ρλ  (12) 

Using integration by parts (13)-(14) the first term in equation (12) may be 
written in the form (15). 
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 (15) 

Heat flux at the points Ax  and Bx  is defined as follows: 

 b

a

B

A

x

x

x

x

q
dx

dT =− λ  (16) 

Finally the weak form of the equation of heat conduction takes the following 
form: 

 b

a

x

x
qwdx

t

T
wcdx

x

T

x

w −=
∂
∂+

∂
∂

∂
∂

∫∫
ΩΩ

ρλ  (17) 

Equation (17) is discretized over the space with the use of the Galerkin method 
where the weighting functions w  are the same as the shape functions N of the 
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finite elements. Then the implicit time integration scheme is used to obtain global 
set of equations. The final form of the global FEM equation is shown below: 

 ff

tt
MTBTMK

∆
+=









∆
+ + 11 1  (18) 

where: K  is the global thermal conductivity matrix, M  – global heat capacity 
matrix, B  – right hand side vector, t∆  – time step, f  – time level. 

In this paper results of analytical solution obtained using the Fourier series and 
numerical model based on the Finite Element Method for selected time moments 
are presented. In addition, distributions of the temperature obtained as a result of 
both solutions, are compared to check their compatibility. The solutions of equation 
(1) are obtained using the boundary conditions (3)-(4) and the initial condition (5) 
for certain material properties. 
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A chamfering of the joining sheet edges is often used in welding practice. In 
work, the analysis of groove weld influence on residual stress distribution in 
single-pass butt welded joints with thorough penetration, is presented. 

Welding is characterised by an application of the movable, concentrated heat 
source which action causes temperature field movable in time and space. The point 
of departure in the description of the temperature field in a homogeneous and 
isotropic body is a basic differential equation of heat conduction based on the law 
of conservation of energy [1]. Analytical method, proposed by Geissler and 
Bergmann [2], was chosen to solve this differential equation. Three-dimensional 
temporary field for butt welding with thorough penetration was determined on the 
basis of analytical methods of an integral transformation and Green’s function. 

Heating processes of steel leads to the transformation of primary structure into 
austenite, while cooling leads to the transformation of austenite into ferrite, 
pearlite, bainite and martensite. Structural changes of welded joint, connected with 
its cooling (also with hardening), develop heterogeneous picture of material 
structure, which influences the state of stress after welding. Kinetics of phase 
transformations during heating is limited by temperature values at the beginning 
and at the end of austenitic transformation. The quantitative progress of phase 
transformations during welding is determined on the Johnson-Mehl-Avrami and 
Kolomogorov law for diffusive transformations [3], and the Koistinen-Marburger 
law for martensitic transformation [4]. The description of the dependence of 
material’s structure, temperature and transformation time of over-cooled austenite 
during surfacing is made in accordance with the TTT (time-temperature-
transformation) welding diagram during continuous cooling. 

The structural strains resulting from different densities of individual structures 
are related to phase transformations, which in conjunction with the thermal strains 
leads to complicated history of strains during welding thermal cycle. In strain 
calculations there was assumed a linear expansion coefficient of particular 
structural elements and structural strains. Total strain during single-pass welding 
represents the sum of thermal strains caused by phase transformation during 
heating and cooling. Heating leads to the increase in material’s volume, while 
transformation of the initial structure (ferritic, pearlitic or bainitic) in austenite 
causes shrinkage connected with different density of given structures. Cooling of 
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material causes its shrinkage, while transformation of austenite in cooling 
structures causes in turn the increase of its volume. It leads to complicated changes 
of strains dependent not only on the current temperature of material during cooling 
but also on the initial and final temperature of transformation of austenite into 
ferrite, pearlite, bainite or martensite as well as on volumetric shares of given 
structural constituents (including austenite). 

Analytical model of temporary and residual stresses for butt welding with 
thorough penetration was described assuming planar section hypothesis and using 
integral equations of stress equilibrium of the bar and simple Hooke’s law. In 
solution the effect of temperature and phase transformations (structure changes and 
structural strains) has been taken into account. 

Computations of temporary temperature field, phase transformations, strains 
and stresses have been conducted for one-side butt welded of two flats made from 
S235 steel. Numerical simulations were made for joint with welding groove and for 
joint without chamfering of flats. For calculations are used authors’ programs made 
in Borland Delphi. The results are presented in the form of temperature, volume 
phase fraction and stress distributions in the element’s cross section as well as 
stress history at selected points. 

The analysis of residual stress distribution after welding of flats for joint with 
welding groove and for join without chamfering of sheets, did not show significant 
differences. The tensile stress values in the weld and the heat affected zone are 
similar, as is the stress distribution in the area of the parent material. This is due to 
a complete melting of the joint area (liquid area), and the final stress state arises 
after the weld solidification. It follows that the weld groove in the geometric model 
of an welded object for the stress state calculation during butt welded joints with 
thorough penetration, can be omitted. 

Keywords: mathematical modelling, butt welded joint, groove weld, stresses 
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We investigate queueing systems with demands of random space requirements 
and limited buffer space, in which queueing or sojourn time are limited by some 
constant value. For such systems, in the case of exponentially distributed service 
time and Poisson entry, we obtain the steady-state demands number distribution 
and probability of demands losing. In our work, we study queueing systems in 
which demands are also “impatient”. In other words, they can leave the system 
during their waiting in the queue, or even during their servicing. Such systems are 
the models of some real processes. E.g., systems of information transmission often 
deal with the process of messages information reduction. 

Consider the / / /M M n m≤ ∞ - type queueing system with identical servers 
and FIFO service discipline. Let a be the intensity of demands entrance flow, µ  be 

the parameter of service time. Each demand has some random volume ζ  which 
does not depend on the volumes of other demands nor on the demand arriving 
epoch. Let ( ) P{ <x}L x ζ=  be the demand volume distribution function and ( )tσ  be 
the sum of volumes of all demands present in the system at time instant t . The 
values of the process ( )tσ are limited by the constant value V (buffer space 

capacity). Let us denote by )(tη  the number of demands present in the system at 
time t. Let a demand having the volume x arrive to the system at epoch t. Then, it 
will be accepted to the system if ( )t n mη − < +  and ( )t x Vσ − + ≤ . In this case, we 

have ( ) ( ) 1t tη η −= + , ( ) ( )t t xσ σ −= + . In opposite case, the demand will be lost and 

( ) ( )t tσ σ −= , ( ) ( )t tη η −= . If t is the epoch when a demand of volume x leaves the 

system, we have ( ) ( ) 1t tη η −= − , ( ) ( )t t xσ σ −= − .  

We will assume that the system load = a ([n( + )]) ρ µ α  is finite (ρ < ∞ ). Our 
goal is to determine the distribution of the stationary number of entries that are 
present in the system and the probability of reporting loss due to these restrictions. 

Let A be the event that the request that came to the system stationary will not be 
lost at the time of its arrival and will continue to be completely served, K - average 
number of occupied service devices (positions). It is clear that  
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Then the probability that the requests will be lost at the time of arrival or not fully 
served is 
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For example, when the volume of the requests has a uniform distribution on the 
interval ]2,1[ , then the probability of its loss is given by the graph (figure 1).  

 

Fig. 1. Loss probability for ]10,0[=V  
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